40,083 research outputs found

    Virtualization of Heterogeneous HPC-clusters Based on OpenStack Platform

    Get PDF
    We address to a problem of an integration of heterogeneous computing clusters to the united environment based on a virtualization technology. We select the software OpenStack as a platform for managing the virtual environment. The platform OpenStack provides a wide range of components and solutions for a functional interaction with different hypervisors. These include KVM, XEN, ESXi, QEMU and other systems. In addition to the platform OpenStack, we developed the specialized hypervisor shell. It provides a virtual machines run from queues of the traditional resource management systems, such as PBS, SLURM, LSF or SGE, that are used on clusters of a center of collective usage. The developed model of the resource allocation for virtual machines allows us jointly to use the knowledge about the job requests, resource characteristics and current state of the environment, and the expertise of it administrators. The realized tools provide the capability for the "painless" integration of heterogeneous clusters with the preinstalled local resource managers to the virtual cluster with the required configuration. Extensive modeling show that the hypervisor shell can improve an efficiency of integrated environment nodes through reallocating virtual machines to queues of the traditional resource management systems

    Container-based Virtual Elastic Clusters

    Full text link
    [EN] eScience demands large-scale computing clusters to support the efficient execution of resource-intensive scientific applications. Virtual Machines (VMs) have introduced the ability to provide customizable execution environments, at the expense of performance loss for applications. However, in recent years, containers have emerged as a light-weight virtualization technology compared to VMs. Indeed, the usage of containers for virtual clusters allows better performance for the applications and fast deployment of additional working nodes, for enhanced elasticity. This paper focuses on the deployment, configuration and management of Virtual Elastic computer Clusters (VEC) dedicated to process scientific workloads. The nodes of the scientific cluster are hosted in containers running on bare-metal machines. The opensource tool Elastic Cluster for Docker (EC4Docker) is introduced, integrated with Docker Swarm to create auto-scaled virtual computer clusters of containers across distributed deployments. We also discuss the benefits and limitations of this solution and analyse the performance of the developed tools under a real scenario by means of a scientific use case that demonstrates the feasibility of the proposed approach.This work has been developed under the support of the program "Ayudas para la contratacion de personal investigador en formacion de catheter predoctoral, programa VALi+d", grant number ACIF/2013/003, from the Conselleria d'Educacio of the Generalitat Valenciana. The authors wish to thank the financial support received form The Spanish Ministry of Economy and Competitiveness to develop the project "CLUVIEM", with reference TIN2013-44390-R.Alfonso Laguna, CD.; Calatrava Arroyo, A.; Moltó, G. (2017). Container-based Virtual Elastic Clusters. Journal of Systems and Software. 127:1-11. https://doi.org/10.1016/j.jss.2017.01.007S11112

    Dynamic on Demand Virtual Clusters in Grid

    Get PDF
    In Grid environments, many different resources are intended to work in a coordinated manner, each resource having its own features and complexity. As the number of resources grows, simplifying automation and management is among the most important issues to address. This paper's contribution lies on the extension and implementation of a grid metascheduler that dynamically discovers, creates and manages on-demand virtual clusters. The first module selects the clusters using graph heuristics. The algorithm then tries to find a solution by searching a set of clusters, mapped to the graph, that achieve the best performance for a given task. The second module, one per-grid node, monitors and manages physical and virtual machines. When a new task arrives, these modules modify virtual machine's configuration or use live migration to dynamically adapt resource distribution at the clusters, obtaining maximum utilization. Metascheduler components and local administrator modules work together to make decisions at run time to balance and optimize system throughput. This implementation results in performance improvement of 20% on the total computing time, with machines and clusters processing 100% of their working time. These results allow us to conclude that this solution is feasible to be implemented on Grid environments, where automation and self-management are key to attain effective resource usage.Lecture Notes in Computer Science book series (LNTCS, vol. 5415)Instituto de Investigación en Informátic

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201
    corecore