726 research outputs found

    Performance analysis of satellite payload architectures for mobile services

    Get PDF

    The Role of Satellite Systems in Future Aeronautical Communications

    Get PDF
    Materials scienc

    PIM-SM = Protocol Independent Multicast- Sparse Mode

    Get PDF
    This paper proposes a design for IP multicast routing in hybrid satellite networks. The emergence of IP multicast for Internet group communication has placed focus on communication satellites as an efficient way to extend the multicast services for groups with distributed membership in wide-area networks. This poses interesting challenges for routing. Hybrid satellite networks can have both wired and wireless links and also combine different link-layer technologies like Ethernet and ATM. No proposed IP multicast routing protocol for wired networks offers an integrated solution for such networks. This paper attempts to provide a solution by proposing a design for IP multicast routing in wide-area networks that have terrestrial Ethernet LANs interconnected by A TM-based satellite channels. The paper reviews the multicast services offered by IP and A TM, and proposes a multicast routing framework that combines PIM-SM protocol for terrestrial multicasting with the A TM MARS and VC mesh architecture for multicast routing over the satellite links. Modifications are made to the standard protocols to suit the unique needs of the network being considered. The feasibility of the proposed design is tested by performing simulations. The proposed framework is presented in detail, along with analysis and simulation results

    Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    Get PDF
    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided

    On-board closed-loop congestion control for satellite based packet switching networks

    Get PDF
    NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time

    MAC Layer QoS Mechanisms for a Geostationary Satellite Network

    Get PDF
    An efficient resource management is crucial in supporting multimedia traffic in satellite networks. To this, Dynamic Bandwidth Allocation Capabilities mechanisms can be exploited to deliver the required QoS while optimising the bandwidth utilization. This paper just deals with the design of innovative algorithms for scheduling and sending the resource requests queued on a EuroSkyWay [1,2] satellite terminal to a Traffic Resource Manager (TRM). The effectiveness of the defined mechanisms has been evaluated through computer simulations. Particularly, by considering different mixes of MPEG-2 traffic and HTTP traffic, the Average Waiting Time (AWT) of the requests and their Losses Percentage have been calculated and compared with those ones obtained using algorithms proposed in MAC layer EuroSkyWay specifications

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl
    • …
    corecore