175 research outputs found

    A Comparative Study of Scheduling Techniques for Multimedia Applications on SIMD Pipelines

    Full text link
    Parallel architectures are essential in order to take advantage of the parallelism inherent in streaming applications. One particular branch of these employ hardware SIMD pipelines. In this paper, we analyse several scheduling techniques, namely ad hoc overlapped execution, modulo scheduling and modulo scheduling with unrolling, all of which aim to efficiently utilize the special architecture design. Our investigation focuses on improving throughput while analysing other metrics that are important for streaming applications, such as register pressure, buffer sizes and code size. Through experiments conducted on several media benchmarks, we present and discuss trade-offs involved when selecting any one of these scheduling techniques.Comment: Presented at DATE Friday Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems (HIS 2015) (arXiv:1502.07241

    Generic Connectivity-Based CGRA Mapping via Integer Linear Programming

    Full text link
    Coarse-grained reconfigurable architectures (CGRAs) are programmable logic devices with large coarse-grained ALU-like logic blocks, and multi-bit datapath-style routing. CGRAs often have relatively restricted data routing networks, so they attract CAD mapping tools that use exact methods, such as Integer Linear Programming (ILP). However, tools that target general architectures must use large constraint systems to fully describe an architecture's flexibility, resulting in lengthy run-times. In this paper, we propose to derive connectivity information from an otherwise generic device model, and use this to create simpler ILPs, which we combine in an iterative schedule and retain most of the exactness of a fully-generic ILP approach. This new approach has a speed-up geometric mean of 5.88x when considering benchmarks that do not hit a time-limit of 7.5 hours on the fully-generic ILP, and 37.6x otherwise. This was measured using the set of benchmarks used to originally evaluate the fully-generic approach and several more benchmarks representing computation tasks, over three different CGRA architectures. All run-times of the new approach are less than 20 minutes, with 90th percentile time of 410 seconds. The proposed mapping techniques are integrated into, and evaluated using the open-source CGRA-ME architecture modelling and exploration framework.Comment: 8 pages of content; 8 figures; 3 tables; to appear in FCCM 2019; Uses the CGRA-ME framework at http://cgra-me.ece.utoronto.ca

    Compiler and Architecture Design for Coarse-Grained Programmable Accelerators

    Get PDF
    abstract: The holy grail of computer hardware across all market segments has been to sustain performance improvement at the same pace as silicon technology scales. As the technology scales and the size of transistors shrinks, the power consumption and energy usage per transistor decrease. On the other hand, the transistor density increases significantly by technology scaling. Due to technology factors, the reduction in power consumption per transistor is not sufficient to offset the increase in power consumption per unit area. Therefore, to improve performance, increasing energy-efficiency must be addressed at all design levels from circuit level to application and algorithm levels. At architectural level, one promising approach is to populate the system with hardware accelerators each optimized for a specific task. One drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low as they perform one specific function. Using software programmable accelerators is an alternative approach to achieve high energy-efficiency and programmability. Due to intrinsic characteristics of software accelerators, they can exploit both instruction level parallelism and data level parallelism. Coarse-Grained Reconfigurable Architecture (CGRA) is a software programmable accelerator consists of a number of word-level functional units. Motivated by promising characteristics of software programmable accelerators, the potentials of CGRAs in future computing platforms is studied and an end-to-end CGRA research framework is developed. This framework consists of three different aspects: CGRA architectural design, integration in a computing system, and CGRA compiler. First, the design and implementation of a CGRA and its instruction set is presented. This design is then modeled in a cycle accurate system simulator. The simulation platform enables us to investigate several problems associated with a CGRA when it is deployed as an accelerator in a computing system. Next, the problem of mapping a compute intensive region of a program to CGRAs is formulated. From this formulation, several efficient algorithms are developed which effectively utilize CGRA scarce resources very well to minimize the running time of input applications. Finally, these mapping algorithms are integrated in a compiler framework to construct a compiler for CGRADissertation/ThesisDoctoral Dissertation Computer Science 201

    Efficient performance scaling of future CGRAs for mobile applications

    Full text link

    Implementation of Data-Driven Applications on Two-Level Reconfigurable Hardware

    Get PDF
    RÉSUMÉ Les architectures reconfigurables à large grain sont devenues un sujet important de recherche en raison de leur haut potentiel pour accélérer une large gamme d’applications. Ces architectures utilisent la nature parallèle de l’architecture matérielle pour accélérer les calculs. Les architectures reconfigurables à large grain sont en mesure de combler les lacunes existantes entre le FPGA (architecture reconfigurable à grain fin) et le processeur. Elles contrastent généralement avec les Application Specific Integrated Circuits (ASIC) en ce qui concerne la performance (moins bonnes) et la flexibilité (meilleures). La programmation d’architectures reconfigurables est un défi qui date depuis longtemps et pose plusieurs problèmes. Les programmeurs doivent être avisés des caractéristiques du matériel sur lequel ils travaillent et connaître des langages de description matériels tels que VHDL et Verilog au lieu de langages de programmation séquentielle. L’implémentation d’un algorithme sur FPGA s’avère plus difficile que de le faire sur des CPU ou des GPU. Les implémentations à base de processeurs ont déjà leur chemin de données pré synthétisé et ont besoin uniquement d’un programme pour le contrôler. Par contre, dans un FPGA, le développeur doit créer autant le chemin de données que le contrôleur. Cependant, concevoir une nouvelle architecture pour exploiter efficacement les millions de cellules logiques et les milliers de ressources arithmétiques dédiées qui sont disponibles dans une FPGA est une tâche difficile qui requiert beaucoup de temps. Seulement les spécialistes dans le design de circuits peuvent le faire. Ce projet est fondé sur un tissu de calcul générique contrôlé par les données qui a été proposé par le professeur J.P David et a déjà été implémenté par un étudiant à la maîtrise M. Allard. Cette architecture est principalement formée de trois composants: l’unité arithmétique et logique partagée (Shared Arithmetic Logic Unit –SALU-), la machine à état pour le jeton des données (Token State Machine –TSM-) et la banque de FIFO (FIFO Bank –FB-). Cette architecture est semblable aux architectures reconfigurables à large grain (Coarse-Grained Reconfigurable Architecture-CGRAs-), mais contrôlée par les données.----------ABSTRACT Coarse-grained reconfigurable computing architectures have become an important research topic because of their high potential to accelerate a wide range of applications. These architectures apply the concurrent nature of hardware architecture to accelerate computations. Substantially, coarse-grained reconfigurable computing architectures can fill up existing gaps between FPGAs and processor. They typically contrast with Application Specific Integrated Circuits (ASICs) in connection with performance and flexibility. Programming reconfigurable computing architectures is a long-standing challenge, and it is yet extremely inconvenient. Programmers must be aware of hardware features and also it is assumed that they have a good knowledge of hardware description languages such as VHDL and Verilog, instead of the sequential programming paradigm. Implementing an algorithm on FPGA is intrinsically more difficult than programming a processor or a GPU. Processor-based implementations “only” require a program to control their pre-synthesized data path, while an FPGA requires that a designer creates a new data path and a new controller for each application. Nevertheless, conceiving an architecture that best exploits the millions of logic cells and the thousands of dedicated arithmetic resources available in an FPGA is a time-consuming challenge that only talented experts in circuit design can handle. This project is founded on the generic data-driven compute fabric proposed by Prof. J.P. David and implemented by M. Allard, a previous master student. This architecture is composed of three main individual components: the Shared Arithmetic Logic Unit (SALU), the Token State Machine (TSM) and the FIFO Bank (FB). The architecture is somewhat similar to Coarse-Grained Reconfigurable Architectures (CGRAs), but it is data-driven. Indeed, in that architecture, register banks are replaced by FBs and the controllers are TSMs. The operations start as soon as the operands are available in the FIFOs that contain the operands. Data travel from FBs to FBs through the SALU, as programmed in the configuration memory of the TSMs. Final results return in FIFOs

    Libra: Achieving Efficient Instruction- and Data- Parallel Execution for Mobile Applications.

    Full text link
    Mobile computing as exemplified by the smart phone has become an integral part of our daily lives. The next generation of these devices will be driven by providing richer user experiences and compelling capabilities: higher definition multimedia, 3D graphics, augmented reality, and voice interfaces. To meet these goals, the core computing capabilities of the smart phone must be scaled. But, the energy budgets are increasing at a much lower rate, thus fundamental improvements in computing efficiency must be garnered. To meet this challenge, computer architects employ hardware accelerators in the form of SIMD and VLIW. Single-instruction multiple-data (SIMD) accelerators provide high degrees of scalability for applications rich in data-level parallelism (DLP). Very long instruction word (VLIW) accelerators provide moderate scalability for applications with high degrees of instruction-level parallelism (ILP). Unfortunately, applications are not so nicely partitioned into two groups: many applications have some DLP, but also contain significant fractions of code with low trip count loops, complex control/data dependences, or non-uniform execution behavior for which no DLP exists. Therefore, a more adaptive accelerator is required to be able to deploy resources as needed: exploit DLP on SIMD when it’s available, but fall back to ILP on the same hardware when necessary. In this thesis, we first focus on various compiler solutions that solve inefficiency problem in both VLIW and SIMD accelerators. For SIMD accelerators, a new vectorization pass, called SIMD Defragmenter, is introduced to uncover hidden DLP using subgraph identification in SIMD accelerators. CGRA express effectively accelerates sequential code regions using a bypass network in VLIW accelerators, and Resource Recycling leverages stream-graph modulo scheduling technique for scheduling of multiple code regions in multi-core accelerators. Second, we propose the new scalable multicore accelerator referred to as Libra for mobile systems, which can support execution of code regions having both DLP and ILP, as well as hybrid combinations of the two. We believe that as industry requires higher performance, the proposed flexible accelerator and compiler support will put more resources to work in order to meet the performance and power efficiency requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99840/1/yjunpark_1.pd

    A Methodology to Design Pipelined Simulated Annealing Kernel Accelerators on Space-Borne Field-Programmable Gate Arrays

    Get PDF
    Increased levels of science objectives expected from spacecraft systems necessitate the ability to carry out fast on-board autonomous mission planning and scheduling. Heterogeneous radiation-hardened Field Programmable Gate Arrays (FPGAs) with embedded multiplier and memory modules are well suited to support the acceleration of scheduling algorithms. A methodology to design circuits specifically to accelerate Simulated Annealing Kernels (SAKs) in event scheduling algorithms is shown. The main contribution of this thesis is the low complexity scoring calculation used for the heuristic mapping algorithm used to balance resource allocation across a coarse-grained pipelined data-path. The methodology was exercised over various kernels with different cost functions and problem sizes. These test cases were benchedmarked for execution time, resource usage, power, and energy on a Xilinx Virtex 4 LX QR 200 FPGA and a BAE RAD 750 microprocessor

    Polymorphic Pipeline Array: A Flexible Multicore Accelerator for Mobile Multimedia Applications.

    Full text link
    Mobile computing in the form of smart phones, netbooks, and PDAs has become an integral part of our everyday lives. Moving ahead to the next generation of mobile devices, we believe that multimedia will become a more critical and product-differentiating feature. High definition audio and video as well as 3D graphics provide richer interfaces and compelling capabilities. However, these algorithms also bring different computational challenges than wireless signal processing. Multimedia algorithms are more complex featuring more control flow and variable computational requirements where execution time is not dominated by innermost vector loops. Further, data access is more complex where media applications typically operate on multi-dimensional vectors of data rather than single-dimensional vectors with simple strides. Thus, the design of current mobile platforms requires re-examination to account for these new application domains. In this dissertation, we focus on the design of a programmable, low-power accelerator for multimedia algorithms referred to as a Polymorphic Pipeline Array (PPA). The PPA design is inspired by coarse-grain reconfigurable architectures (CGRAs) that consist of an array of function units interconnected by a mesh style interconnect. The PPA improves upon CGRAs by attacking two major limitations: scalability and acceleration limited to innermost loops. The large number of resources are fully utilized by exploiting both Lne-grain instruction-level and coarse-grain pipeline parallelism, and the acceleration is extended beyond innermost loops to encompass the whole region of applications. Various compiler and architectural optimizations are presented for CGRAs that form the basic building blocks of PPA. Two compiler techniques are presented that systematically construct the schedule with intelligent heuristics. Modulo graph embedding leverages graph embedding technique for scheduling in CGRAs and edgecentric modulo scheduling provides a communication-oriented way to address the scheduling problem. For architectural improvement, a novel control path design is presented that leverages the token network of dataflow machines to reduce the instructionmemory power. The PPA is designed with flexibility and programmability as first-order requirements to enable the hardware to be dynamically customizable to the application. A PPA exploit pipeline parallelism found in streaming applications to create a coarsegrain hardware pipeline to execute streaming media applications.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64732/1/parkhc_1.pd

    Performance evaluation of MPEG-4 Video encoder on Adres

    Get PDF
    Curs 2006-2007Actualment un típic embedded system (ex. telèfon mòbil) requereix alta qualitat per portar a terme tasques com codificar/descodificar a temps real; han de consumir poc energia per funcionar hores o dies utilitzant bateries lleugeres; han de ser el suficientment flexibles per integrar múltiples aplicacions i estàndards en un sol aparell; han de ser dissenyats i verificats en un període de temps curt tot i l’augment de la complexitat. Els dissenyadors lluiten contra aquestes adversitats, que demanen noves innovacions en arquitectures i metodologies de disseny. Coarse-grained reconfigurable architectures (CGRAs) estan emergent com a candidats potencials per superar totes aquestes dificultats. Diferents tipus d’arquitectures han estat presentades en els últims anys. L’alta granularitat redueix molt el retard, l’àrea, el consum i el temps de configuració comparant amb les FPGAs. D’altra banda, en comparació amb els tradicionals processadors coarse-grained programables, els alts recursos computacionals els permet d’assolir un alt nivell de paral•lelisme i eficiència. No obstant, els CGRAs existents no estant sent aplicats principalment per les grans dificultats en la programació per arquitectures complexes. ADRES és una nova CGRA dissenyada per I’Interuniversity Micro-Electronics Center (IMEC). Combina un processador very-long instruction word (VLIW) i un coarse-grained array per tenir dues opcions diferents en un mateix dispositiu físic. Entre els seus avantatges destaquen l’alta qualitat, poca redundància en les comunicacions i la facilitat de programació. Finalment ADRES és un patró enlloc d’una arquitectura concreta. Amb l’ajuda del compilador DRESC (Dynamically Reconfigurable Embedded System Compile), és possible trobar millors arquitectures o arquitectures específiques segons l’aplicació. Aquest treball presenta la implementació d’un codificador MPEG-4 per l’ADRES. Mostra l’evolució del codi per obtenir una bona implementació per una arquitectura donada. També es presenten les característiques principals d’ADRES i el seu compilador (DRESC). Els objectius són de reduir al màxim el nombre de cicles (temps) per implementar el codificador de MPEG-4 i veure les diferents dificultats de treballar en l’entorn ADRES. Els resultats mostren que els cícles es redueixen en un 67% comparant el codi inicial i final en el mode VLIW i un 84% comparant el codi inicial en VLIW i el final en mode CGA.Nowadays, a typical embedded system requires high performance to perform tasks such as video encoding/decoding at run-time. It should consume little energy to work hours or even days using a lightweight battery. It should be flexible enough to integrate multiple applications and standards in one single device. It has to be designed and verified in short time-to-market despite substantially increased complexity. The designers are struggling to meet these huge challenges, which call for innovations of both architectures and design methodology. Coarse-grained reconfigurable architectures (CGRAs) are emerging as potential candidates to meet the above challenges. Many of them were proposed in recent years. This coarse granularity greatly reduces delay, area, power and configuration time compared with FPGAs. On the other hand, compared with traditional "coarse-grained" programmable processors, their massive computational resources enable them to achieve high parallelism and efficiency. However, existing CGRAs have yet been widely adopted mainly because of programming difficulty for such complex architecture. ADRES is a novel CGRA designed by Interuniversity Micro-Electronics Center (IMEC). It tightly couples a very-long instruction word (VLIW) processor and a coarse-grained array by providing two functional views on the same physical resources. It brings advantages such as high performance, low communication overhead and easiness of programming. Finally, ADRES is a template instead of a concrete architecture. With the retargetable compilation support from DRESC (Dynamically Reconfigurable Embedded System Compile), architectural exploration becomes possible to discover better architectures or design domain-specific architectures. In this thesis, a performance of an MPEG-4 encoder in ADRES is presented. The thesis shows the code evolution to obtain a good implementation for a given architecture. The main features of ADRES and its compiler (DRESC) are presented. The objectives are to reduce as much as possible the amount of cycles (time) spent to encode video in MPEG-4 and test different issues working with ADRES environment. The cycles decrease a 67% comparing initial and final code in VLIW and 84% between initial VLIW and CGA mode.Director/a: Moisès Serra i SerraSupervisor: Eric Delfoss
    • …
    corecore