941 research outputs found

    Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems

    Full text link
    We consider the problem of allocating radio resources over wireless communication links to control a series of independent wireless control systems. Low-latency transmissions are necessary in enabling time-sensitive control systems to operate over wireless links with high reliability. Achieving fast data rates over wireless links thus comes at the cost of reliability in the form of high packet error rates compared to wired links due to channel noise and interference. However, the effect of the communication link errors on the control system performance depends dynamically on the control system state. We propose a novel control-communication co-design approach to the low-latency resource allocation problem. We incorporate control and channel state information to make scheduling decisions over time on frequency, bandwidth and data rates across the next-generation Wi-Fi based wireless communication links that close the control loops. Control systems that are closer to instability or further from a desired range in a given control cycle are given higher packet delivery rate targets to meet. Rather than a simple priority ranking, we derive precise packet error rate targets for each system needed to satisfy stability targets and make scheduling decisions to meet such targets while reducing total transmission time. The resulting Control-Aware Low Latency Scheduling (CALLS) method is tested in numerous simulation experiments that demonstrate its effectiveness in meeting control-based goals under tight latency constraints relative to control-agnostic scheduling

    Energy-aware MPC co-design for DC-DC converters

    Get PDF
    In this paper, we propose an integrated controller design methodology for the implementation of an energy-aware explicit model predictive control (MPC) algorithms, illustrat- ing the method on a DC-DC converter model. The power consumption of control algorithms is becoming increasingly important for low-power embedded systems, especially where complex digital control techniques, like MPC, are used. For DC-DC converters, digital control provides better regulation, but also higher energy consumption compared to standard analog methods. To overcome the limitation in energy efficiency, instead of addressing the problem by implementing sub-optimal MPC schemes, the closed-loop performance and the control algorithm power consumption are minimized in a joint cost function, allowing us to keep the controller power efficiency closer to an analog approach while maintaining closed-loop op- timality. A case study for an implementation in reconfigurable hardware shows how a designer can optimally trade closed-loop performance with hardware implementation performance

    Control over the Cloud : Offloading, Elastic Computing, and Predictive Control

    Get PDF
    The thesis studies the use of cloud native software and platforms to implement critical closed loop control. It considers technologies that provide low latency and reliable wireless communication, in terms of edge clouds and massive MIMO, but also approaches industrial IoT and the services of a distributed cloud, as an extension of commercial-of-the-shelf software and systems.First, the thesis defines the cloud control challenge, as control over the cloud and controller offloading. This is followed by a demonstration of closed loop control, using MPC, running on a testbed representing the distributed cloud.The testbed is implemented using an IoT device, clouds, next generation wireless technology, and a distributed execution platform. Platform details are provided and feasibility of the approach is shown. Evaluation includes relocating an on-line MPC to various locations in the distributed cloud. Offloaded control is examined next, through further evaluation of cloud native software and frameworks. This is followed by three controller designs, tailored for use with the cloud. The first controller solves MPC problems in parallel, to implement a variable horizon controller. The second is a hierarchical design, in which rate switching is used to implement constrained control, with a local and a remote mode. The third design focuses on reliability. Here, the MPC problem is extended to include recovery paths that represent a fallback mode. This is used by a control client if it experiences connectivity issues.An implementation is detailed and examined.In the final part of the thesis, the focus is on latency and congestion. A cloud control client can experience long and variable delays, from network and computations, and used services can become overloaded. These problems are approached by using predicted control inputs, dynamically adjusting the control frequency, and using horizontal scaling of the cloud service. Several examples are shown through simulation and on real clouds, including admitting control clients into a cluster that becomes temporarily overloaded

    Age-Based Metrics for Joint Control and Communication in Cyber-Physical Industrial Systems

    Get PDF
    • …
    corecore