9,232 research outputs found

    Resource Allocation for Delay Differentiated Traffic in Multiuser OFDM Systems

    Full text link
    Most existing work on adaptive allocation of subcarriers and power in multiuser orthogonal frequency division multiplexing (OFDM) systems has focused on homogeneous traffic consisting solely of either delay-constrained data (guaranteed service) or non-delay-constrained data (best-effort service). In this paper, we investigate the resource allocation problem in a heterogeneous multiuser OFDM system with both delay-constrained (DC) and non-delay-constrained (NDC) traffic. The objective is to maximize the sum-rate of all the users with NDC traffic while maintaining guaranteed rates for the users with DC traffic under a total transmit power constraint. Through our analysis we show that the optimal power allocation over subcarriers follows a multi-level water-filling principle; moreover, the valid candidates competing for each subcarrier include only one NDC user but all DC users. By converting this combinatorial problem with exponential complexity into a convex problem or showing that it can be solved in the dual domain, efficient iterative algorithms are proposed to find the optimal solutions. To further reduce the computational cost, a low-complexity suboptimal algorithm is also developed. Numerical studies are conducted to evaluate the performance the proposed algorithms in terms of service outage probability, achievable transmission rate pairs for DC and NDC traffic, and multiuser diversity.Comment: 29 pages, 8 figures, submitted to IEEE Transactions on Wireless Communication

    Energy Harvesting for Secure OFDMA Systems

    Full text link
    Energy harvesting and physical-layer security in wireless networks are of great significance. In this paper, we study the simultaneous wireless information and power transfer (SWIPT) in downlink orthogonal frequency-division multiple access (OFDMA) systems, where each user applies power splitting to coordinate the energy harvesting and information decoding processes while secrecy information requirement is guaranteed. The problem is formulated to maximize the aggregate harvested power at the users while satisfying secrecy rate requirements of all users by subcarrier allocation and the optimal power splitting ratio selection. Due to the NP-hardness of the problem, we propose an efficient iterative algorithm. The numerical results show that the proposed method outperforms conventional methods.Comment: Accepted by WCSP 201

    Flexible QoS Support in DVB-RCS2

    Get PDF
    Postprin

    New contention resolution schemes for WiMAX

    Get PDF
    Abstract—The use of Broadband Wireless Access (BWA) technology is increasing due to the use of Internet and multimedia applications with strict requirements of end–to–end delay and jitter, through wireless devices. The IEEE 802.16 standard, which defines the physical (PHY) and the medium access control (MAC) layers, is one of the BWA standards. Its MAC layer is centralized basis, where the Base Station (BS) is responsible for assigning the needed bandwidth for each Subscriber Station (SS), which requests bandwidth competing between all of them. The standard defines a contention resolution process to resolve the potential occurrence of collisions during the requesting process. In this paper, we propose to modify the contention resolution process to improve the network performance, including end–to–end delay and throughput

    Mobile WiMAX: multi-cell network evaluation and capacity optimization

    Get PDF

    Resource Allocation for Energy-Efficient Device-to-Device Communication in 4G Networks

    Full text link
    Device-to-device (D2D) communications as an underlay of a LTE-A (4G) network can reduce the traffic load as well as power consumption in cellular networks by way of utilizing peer-to-peer links for users in proximity of each other. This would enable other cellular users to increment their traffic, and the aggregate traffic for all users can be significantly increased without requiring additional spectrum. However, D2D communications may increase interference to cellular users (CUs) and force CUs to increase their transmit power levels in order to maintain their required quality-of-service (QoS). This paper proposes an energy-efficient resource allocation scheme for D2D communications as an underlay of a fully loaded LTE-A (4G) cellular network. Simulations show that the proposed scheme allocates cellular uplink resources (transmit power and channel) to D2D pairs while maintaining the required QoS for D2D and cellular users and minimizing the total uplink transmit power for all users.Comment: 2014 7th International Symposium on Telecommunications (IST'2014

    Matching Theory for Backhaul Management in Small Cell Networks with mmWave Capabilities

    Full text link
    Designing cost-effective and scalable backhaul solutions is one of the main challenges for emerging wireless small cell networks (SCNs). In this regard, millimeter wave (mmW) communication technologies have recently emerged as an attractive solution to realize the vision of a high-speed and reliable wireless small cell backhaul network (SCBN). In this paper, a novel approach is proposed for managing the spectral resources of a heterogeneous SCBN that can exploit simultaneously mmW and conventional frequency bands via carrier aggregation. In particular, a new SCBN model is proposed in which small cell base stations (SCBSs) equipped with broadband fiber backhaul allocate their frequency resources to SCBSs with wireless backhaul, by using aggregated bands. One unique feature of the studied model is that it jointly accounts for both wireless channel characteristics and economic factors during resource allocation. The problem is then formulated as a one-to-many matching game and a distributed algorithm is proposed to find a stable outcome of the game. The convergence of the algorithm is proven and the properties of the resulting matching are studied. Simulation results show that under the constraints of wireless backhauling, the proposed approach achieves substantial performance gains, reaching up to 30%30 \% compared to a conventional best-effort approach.Comment: In Proc. of the IEEE International Conference on Communications (ICC), Mobile and Wireless Networks Symposium, London, UK, June 201
    • 

    corecore