1,134 research outputs found

    Crucial File Selection Strategy (CFSS) for Enhanced Download Response Time in Cloud Replication Environments

    Get PDF
    الحوسبة السحابية هي عبارة عن منصة ضخمة لتقديم بيانات كبيرة الحجم من أجهزة متعددة وتقنيات مختلفه. هناك طلب كبير من قبل مستأجري السحابة للوصول إلى بياناتهم بشكل أسرع دون أي انقطاع. يبدل مقدمو الخدمات السحابية كل جهدهم لضمان تأمين كل البيانات الفردية وإمكانية الوصول إليها دائمًا. ومن الملاحظ بإن استراتيجية النسخ المتماثل المناسبة القادرة على اختيار البيانات الأساسية مطلوبة في بيئات النسخ السحابي كأحد الحلول. اقترحت هذه الورقة استراتيجية اختيار الملفات الحاسمة (CFSS) لمعالجة وقت الاستجابة الضعيف في بيئة النسخ المتماثل السحابي. يتم استخدام محاكي سحابة يسمى CloudSim لإجراء التجارب اللازمة ، ويتم تقديم النتائج لإثبات التحسن في أداء النسخ المتماثل. تمت مناقشة الرسوم البيانية التحليلية التي تم الحصول عليها بدقة ، وأظهرت النتائج تفوق خوارزمية CFSS المقترحة على خوارزمية أخرى موجودة مع تحسن بنسبة 10.47 ٪ في متوسط ​​وقت الاستجابة لوظائف متعددة في كل جولة.Cloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained analytical graphs are discussed thoroughly, and apparently, the proposed CFSS algorithm outperformed another existing algorithm with a 10.47% improvement in average response time for multiple jobs per round

    DATA REPLICATION IN DISTRIBUTED SYSTEMS USING OLYMPIAD OPTIMIZATION ALGORITHM

    Get PDF
    Achieving timely access to data objects is a major challenge in big distributed systems like the Internet of Things (IoT) platforms. Therefore, minimizing the data read and write operation time in distributed systems has elevated to a higher priority for system designers and mechanical engineers. Replication and the appropriate placement of the replicas on the most accessible data servers is a problem of NP-complete optimization. The key objectives of the current study are minimizing the data access time, reducing the quantity of replicas, and improving the data availability. The current paper employs the Olympiad Optimization Algorithm (OOA) as a novel population-based and discrete heuristic algorithm to solve the replica placement problem which is also applicable to other fields such as mechanical and computer engineering design problems. This discrete algorithm was inspired by the learning process of student groups who are preparing for the Olympiad exams. The proposed algorithm, which is divide-and-conquer-based with local and global search strategies, was used in solving the replica placement problem in a standard simulated distributed system. The 'European Union Database' (EUData) was employed to evaluate the proposed algorithm, which contains 28 nodes as servers and a network architecture in the format of a complete graph. It was revealed that the proposed technique reduces data access time by 39% with around six replicas, which is vastly superior to the earlier methods. Moreover, the standard deviation of the results of the algorithm's different executions is approximately 0.0062, which is lower than the other techniques' standard deviation within the same experiments

    Metaverse: A Vision, Architectural Elements, and Future Directions for Scalable and Realtime Virtual Worlds

    Full text link
    With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies

    SiteWit Corporation: SQL or NoSQL that is the Question

    Get PDF
    This teaching case focuses on a start-up company in the Web analytics and online advertising space, which faces a database scaling challenge. The case covers the rapidly emerging NoSQL database products that can be used to implement very large distributed databases. These are exciting times in the database marketplace, with a flock of new companies offering scalable database systems for the cloud. These products challenge the existing relational database vendors that have come to dominate the market. The case outlines four potential solutions and asks students to make a choice or suggest a different alternative

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Efficient data reliability management of cloud storage systems for big data applications

    Get PDF
    Cloud service providers are consistently striving to provide efficient and reliable service, to their client's Big Data storage need. Replication is a simple and flexible method to ensure reliability and availability of data. However, it is not an efficient solution for Big Data since it always scales in terabytes and petabytes. Hence erasure coding is gaining traction despite its shortcomings. Deploying erasure coding in cloud storage confronts several challenges like encoding/decoding complexity, load balancing, exponential resource consumption due to data repair and read latency. This thesis has addressed many challenges among them. Even though data durability and availability should not be compromised for any reason, client's requirements on read performance (access latency) may vary with the nature of data and its access pattern behaviour. Access latency is one of the important metrics and latency acceptance range can be recorded in the client's SLA. Several proactive recovery methods, for erasure codes are proposed in this research, to reduce resource consumption due to recovery. Also, a novel cache based solution is proposed to mitigate the access latency issue of erasure coding

    When Internet of Things meets Metaverse: Convergence of Physical and Cyber Worlds

    Get PDF
    In recent years, the Internet of Things (IoT) is studied in the context of the Metaverse to provide users immersive cyber-virtual experiences in mixed reality environments. This survey introduces six typical IoT applications in the Metaverse, including collaborative healthcare, education, smart city, entertainment, real estate, and socialization. In the IoT-inspired Metaverse, we also comprehensively survey four pillar technologies that enable augmented reality (AR) and virtual reality (VR), namely, responsible artificial intelligence (AI), high-speed data communications, cost-effective mobile edge computing (MEC), and digital twins. According to the physical-world demands, we outline the current industrial efforts and seven key requirements for building the IoT-inspired Metaverse: immersion, variety, economy, civility, interactivity, authenticity, and independence. In addition, this survey describes the open issues in the IoT-inspired Metaverse, which need to be addressed to eventually achieve the convergence of physical and cyber worlds.info:eu-repo/semantics/publishedVersio

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio
    corecore