1,811 research outputs found

    Resource allocation issues in broadband wireless networks with OFDM signaling

    Get PDF
    Wireless broadband technologies are anticipated to flourish in thenext few years, due to the increasing demand for wireless connectivityand the need to support enhanced services and applications in local-or wide-area environments. The primary goal in a communications systemis Quality of service (QoS) provisioning to users, which depends onprocedures that span several communication layers. Although independentconsideration of different layers simplifies system design, it oftenturns out to be insufficient for wireless networks. Cochannelinterference between users that reuse the limited spectrum and theresulting impact of local adaptation actions on overall network performance impose layer interactions in wireless systems. The purposeof this work is to identify and study some of the issues that arisefrom the synergy between the physical and the MAC layer in the contextof multiple access schemes with orthogonal channels. Using the essential feature of channel orthogonality as a baseline,our approach places emphasis on Orthogonal Frequency Division Multiplexing(OFDM), which is an emerging multiple access and signaling method for futurewireless broadband networks. In OFDM, the broadband spectrum isdivided into orthogonal, narrow-band subcarriers and user symbols aresplit into subsymbols, which are transmitted in parallel over thosevariable-quality subcarriers. OFDM transmission reduces the effectivesymbol transmission rate, simplifies equalization at the receiver andprovides high immunity to inter-symbol interference and delay spread.Furthermore, it defines a framework for flexible adaptation to varyingchannel conditions, by allowing transmission parameter control foreach subcarrier. We first address the joint problem of channel allocation withsimultaneous adaptation of modulation level and transmission power ina multi-cell OFDM network. We study the impact of those parameters oncochannel interference and channel reuse and present two classes ofcentralized heuristic algorithms to perform the allocation. Next, we focus on a single-cell multi-user system with modulationcontrol and study the problem of subcarrier assignment to userssubject to time resource constraints. We study and compare integral andfractional user assignment, whereby a user is assigned to one subcarrieror can be partially assigned to multiple subcarriers. In addition, weconsider the synergy between link-layer ARQ protocols and physicallayer parameter adaptation. We consider a simple channel monitoringmethod which is based on counting received ACKs and NACKs. For asingle subcarrier, we show that the adaptation policy which maximizeslong-term average throughput per unit time is of threshold type. Wealso expand our policy to the multiple-subcarrier case with similar ordifferent channel qualities.In the sequel, we study the impact of smart antennas and SpaceDivision Multiple Access (SDMA) on MAC layer channel allocation for a single-cell multi-user system. Our approach encompasses multipleaccess schemes with orthogonal channels, such as OFDM. We first considerthe case of unlimited transceiver resources, where a separate beam canbe formed for each user of a spatially separable cochannel user set ina subcarrier. We present heuristic algorithms to allocate subcarriersto users and adjust down-link beam patterns, transmission powers andrates with the objective to increase total achievable system rate andprovide QoS to users in the form of minimum rate guarantees. Then, we consider the allocation problem forlimited transceiver resources, which arises whenever certainreasons impose limitations on the number of beams that can beformed. We propose meaningful heuristic algorithms to jointly formbeams from corresponding transceivers and assign subcarriers andtransceivers to users, such that the total achievable system rate isincreased

    Optimal Real-time Spectrum Sharing between Cooperative Relay and Ad-hoc Networks

    Full text link
    Optimization based spectrum sharing strategies have been widely studied. However, these strategies usually require a great amount of real-time computation and significant signaling delay, and thus are hard to be fulfilled in practical scenarios. This paper investigates optimal real-time spectrum sharing between a cooperative relay network (CRN) and a nearby ad-hoc network. Specifically, we optimize the spectrum access and resource allocation strategies of the CRN so that the average traffic collision time between the two networks can be minimized while maintaining a required throughput for the CRN. The development is first for a frame-level setting, and then is extended to an ergodic setting. For the latter setting, we propose an appealing optimal real-time spectrum sharing strategy via Lagrangian dual optimization. The proposed method only involves a small amount of real-time computation and negligible control delay, and thus is suitable for practical implementations. Simulation results are presented to demonstrate the efficiency of the proposed strategies.Comment: One typo in the caption of Figure 5 is correcte

    Personal area technologies for internetworked services

    Get PDF

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed
    corecore