191 research outputs found

    Performance Enhancement in SU and MU MIMO-OFDM Technique for Wireless Communication: A Review

    Get PDF
    The consistent demand for higher data rates and need to send giant volumes of data while not compromising the quality of communication has led the development of a new generations of wireless systems. But range and data rate limitations are there in wireless devices. In an attempt to beat these limitations, Multi Input Multi Output (MIMO) systems will be used which also increase diversity and improve the bit error rate (BER) performance of wireless systems. They additionally increase the channel capacity, increase the transmitted data rate through spatial multiplexing, and/or reduce interference from other users. MIMO systems therefore create a promising communication system because of their high transmission rates without additional bandwidth or transmit power and robustness against multipath fading. This paper provides the overview of Multiuser MIMO system. A detailed review on how to increase performance of system and reduce the bit error rate (BER) in different fading environment e.g. Rayleigh fading, Rician fading, Nakagami fading, composite fading

    Multicarrier CDMA systems with MIMO technology

    Get PDF
    The rapid demand for broadband wireless access with fast multimedia services initiated a vast research on the development of new wireless systems that will provide high spectral efficiencies and data rates. A potential candidate for future generation wireless systems is multi-carrier code division multiple access (MC-CDMA). To achieve higher user capacities and increase the system data rate, various multiple-input multiple-output (MIMO) technologies such as spatial multiplexing and spatial diversity techniques have been proposed recently and combined with MC-CDMA.This research proposes a chip level coded ordered successive spatial and multiuser interference cancellation (OSSMIC) receiver for downlink MIMO MC-CDMA systems. As the conventional chip level OSIC receiver [1] is unable to overcome multiple access interference (MAI) and performs poorly in multiuser scenarios, the proposed receiver cancels both spatial and multiuser interference by requiring only the knowledge of the desired user's spreading sequence. Simulation results show that the proposed receiver not only performs better than the existing linear detectors [2] but also outperforms both the chip and symbol level OSIC receivers. In this work we also compare the error rate performance between our proposed system and MIMO orthogonal frequency division multiple access (MIMO OFDMA) system and we justify the comparisons with a pairwise error probability (PEP) analysis. MIMO MC-CDMA demonstrates a better performance over MIMO OFDMA under low system loads whereas in high system loads, MIMO OFDMA outperforms MIMO MC-CDMA. However if all users' spreading sequences are used at the desired user receiver, MIMO MC-CDMA performs better than MIMO OFDMA at all system loads.In the second part of this work, user grouping algorithms are proposed to provide power minimisation in grouped MC-CDMA and space-time block code (STBC) MC-CDMA systems. When the allocation is performed without a fair data rate requirement, the optimal solution to the minimisation problem is provided. However when some fairness is considered, the optimal solution requires high computational complexity and hence we solve this problem by proposing two suboptimal algorithms. Simulation results illustrate a significantly reduced power consumption in comparison with other techniques.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Some MIMO applications in cognitive radio networks

    Get PDF
    In the last decade, the wireless communication technology has witnessed a rapid development, which led to a rapid growth in wireless applications and services. However, the radio spectrum resources scarcity resulting from using the traditional methods of fixed spectrum resources allocation has potential constraints on this wireless services rapid growth. Consequently, cognitive radio has been emerged as a possible solution for alleviating this spectrum scarcity problem by employing dynamic resource allocation strategies in order to utilize the available spectrum in a more efficient way so that finding opportunities for new wireless application services could be achieved. In cognitive radio networks, the radio spectrum resources utilization is improved by allowing unlicensed users, known as secondary users, to share the spectrum with licensed users, known as primary users, as long as this sharing do not induce harmful interference on the primary users, which completely entitled to utilize the spectrum. Motivated by MIMO techniques that have been used in practical systems as a means for high data rate transmission and a source for spatial diversity, and by its ease implementation with OFDM, different issues in multi-user MIMO (MU-MIMO) in both the uplink and downlink in the context of cognitive radio are studied in this thesis. More specifically, in the first thrust of this thesis, the spectrum spatial holes which could exist in an uplink MU-MIMO cell as a result of the possible free spatial dimensions resulted from the sparse activity of the primary users is studied; a modified sensing algorithm for these spectrum spatial holes that exploit both the block structure of the OFDM signals and the correlation of their activity states along time are proposed. The second thrust is concerned with cognitive radio relaying in the physical layer where the cognitive radio base station (CBS) relays the PU signal while transmitting its own signals to its SUs. We define secondary users with different priorities (different quality of service requirements); the different levels of priority for SUs are achieved by a newly proposed simple linear scheme based on zero forcing called Hierarchal Priority Zero Forcing scheme HPZF

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Low Dimensional MIMO Systems with Finite Sized Constellation Inputs

    Get PDF
    Non

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore