111 research outputs found

    Novel Subcarrier-pair based Opportunistic DF Protocol for Cooperative Downlink OFDMA

    Full text link
    A novel subcarrier-pair based opportunistic DF protocol is proposed for cooperative downlink OFDMA transmission aided by a decode-and-forward (DF) relay. Specifically, user message bits are transmitted in two consecutive equal-duration time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot for the relay-aided transmission. Each unpaired subcarrier in either the first or second slot is used by the source for direct transmission to a user without the relay's assistance. The sum rate maximized resource allocation (RA) problem is addressed for this protocol under a total power constraint. It is shown that the novel protocol leads to a maximum sum rate greater than or equal to that for a benchmark one, which does not allow the source to implement beamforming at the subcarrier in the second slot for the relay-aided transmission. Then, a polynomial-complexity RA algorithm is developed to find an (at least approximately) optimum resource allocation (i.e., source/relay power, subcarrier pairing and assignment to users) for either the proposed or benchmark protocol. Numerical experiments illustrate that the novel protocol can lead to a much greater sum rate than the benchmark one.Comment: 6 pages, accepted by 2013 IEEE Wireless Communications and Networking Conferenc

    Weighted Sum Rate Maximization for Downlink OFDMA with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper addresses a weighted sum rate (WSR) maximization problem for downlink OFDMA aided by a decode-and-forward (DF) relay under a total power constraint. A novel subcarrier-pair based opportunistic DF relaying protocol is proposed. Specifically, user message bits are transmitted in two time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot. Each unpaired subcarrier in either the first or second slot is used for the source's direct transmission to a user. A benchmark protocol, same as the proposed one except that the transmit beamforming is not used for the relay-aided transmission, is also considered. For each protocol, a polynomial-complexity algorithm is developed to find at least an approximately optimum resource allocation (RA), by using continuous relaxation, the dual method, and Hungarian algorithm. Instrumental to the algorithm design is an elegant definition of optimization variables, motivated by the idea of regarding the unpaired subcarriers as virtual subcarrier pairs in the direct transmission mode. The effectiveness of the RA algorithm and the impact of relay position and total power on the protocols' performance are illustrated by numerical experiments. The proposed protocol always leads to a maximum WSR equal to or greater than that for the benchmark one, and the performance gain of using the proposed one is significant especially when the relay is in close proximity to the source and the total power is low. Theoretical analysis is presented to interpret these observations.Comment: 8 figures, accepted and to be published in IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1301.293

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Resource allocation in networks via coalitional games

    Get PDF
    The main goal of this dissertation is to manage resource allocation in network engineering problems and to introduce efficient cooperative algorithms to obtain high performance, ensuring fairness and stability. Specifically, this dissertation introduces new approaches for resource allocation in Orthogonal Frequency Division Multiple Access (OFDMA) wireless networks and in smart power grids by casting the problems to the coalitional game framework and by providing a constructive iterative algorithm based on dynamic learning theory.  Software Engineering (Software)Algorithms and the Foundations of Software technolog
    • …
    corecore