170 research outputs found

    Fog Computing-Assisted Energy-Efficient Resource Allocation for High-Mobility MIMO-OFDMA Networks

    Get PDF
    © 2018 Lingyun Lu et al. This paper presents a suboptimal approach for resource allocation of massive MIMO-OFDMA systems for high-speed train (HST) applications. An optimization problem is formulated to alleviate the severe Doppler effect and maximize the energy efficiency (EE) of the system. We propose to decouple the problem between the allocations of antennas, subcarriers, and transmit powers and solve the problem by carrying out the allocations separately and iteratively in an alternating manner. Fast convergence can be achieved for the proposed approach within only several iterations. Simulation results show that the proposed algorithm is superior to existing techniques in terms of system EE and throughput in different system configurations of HST applications

    Mobile Broadband Scaling and Enhancement for Fast Moving Trains

    Get PDF
    Internet is an important part of our life, whether traveling or at home. The broadband services available at home are reliable and are usually at constant speed. The people traveling especially in fast moving trains are at higher mobility and may be moving in areas of less connectivity, and providing a reliable service to them is a challenging task. One possible solution to this is to provide communication through an on-board Wi-Fi, which takes services from a central Wi-Fi situated in the middle of the train, which is connected to cellular radio service long-term evolution for railways. The network consists of LTE-R which is dedicated for railway communication only, a public mobile network, which supports LTE-R in the areas of no coverage and high traffic conditions and a public safety network in emergency conditions. The work is verified with the help of simulations on MATLAB, considering different traffic scenarios. The BSs placed at a distance of 2.5 Km and antenna height used is 45 m are equipped with 3G and 4G interfaces, a universal mobile telecommunications services (UMTS) and radio access network (RAN). The UMTS interface is used for voice services and handover when spectrum available in the next cell is less

    QoS-aware User Association and Transmission Scheduling for Millimeter-Wave Train-ground Communications

    Full text link
    With the development of wireless communication, people have put forward higher requirements for train-ground communications in the high-speed railway (HSR) scenarios. With the help of mobile relays (MRs) installed on the roof of the train, the application of Millimeter-Wave (mm-wave) communication which has rich spectrum resources to the train-ground communication system can realize high data rate, so as to meet users' increasing demand for broad-band multimedia access. Also, full-duplex (FD) technology can theoretically double the spectral efficiency. In this paper, we formulate the user association and transmission scheduling problem in the mm-wave train-ground communication system with MR operating in the FD mode as a nonlinear programming problem. In order to maximize the system throughput and the number of users meeting quality of service (QoS) requirements, we propose an algorithm based on coalition game to solve the challenging NP-hard problem, and also prove the convergence and Nash-stable structure of the proposed algorithm. Extensive simulation results demonstrate that the proposed coalition game based algorithm can effectively improve the system throughput and meet the QoS requirements of as many users as possible, so that the communication system has a certain QoS awareness.Comment: 14 page

    Assessment and Real Time Implementation of Wireless Communications Systems and Applications in Transportation Systems

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e das Comunicacións en Redes Móbiles. 5029V01[Resumo] Os sistemas de comunicación sen fíos de cuarta e quinta xeración (4G e 5G) utilizan unha capa física (PHY) baseada en modulacións multiportadora para a transmisión de datos cun gran ancho de banda. Este tipo de modulacións proporcionan unha alta eficiencia espectral á vez que permiten corrixir de forma sinxela os efectos da canle radio. Estes sistemas utilizan OFDMA como mecanismo para a repartición dos recursos radio dispoñibles entre os diferentes usuarios. Este repartimento realízase asignando un subconxunto de subportadoras a cada usuario nun instante de tempo determinado. Isto aporta unha gran flexibilidade ó sistema que lle permite adaptarse tanto ós requisitos de calidade de servizo dos usuarios como ó estado da canle radio. A capa de acceso ó medio (MAC) destes sistemas encárgase de configurar os diversos parámetros proporcionados pola capa física OFDMA, ademais de xestionar os diversos fluxos de información de cada usuario, transformando os paquetes de capas superiores en paquetes da capa física. Neste traballo estúdase o deseño e implementación das capas MAC e PHY de sistemas de comunicación 4G ademais da súa aplicabilidade en sistemas de transporte ferroviarios. Por unha parte, abórdase o deseño e implementación en tempo real do estándar WiMAX. Estúdanse os mecanismos necesarios para establecer comunicacións bidireccionais entre unha estación base e múltiples dispositivos móbiles. Ademais, estúdase como realizar esta implementación nunha arquitectura hardware baseada en DSPs e FPGAs, na que se implementan as capas MAC e PHY. Dado que esta arquitectura ten uns recursos computacionais limitados, tamén se estudan as necesidades de cada módulo do sistema para poder garantir o funcionamento en tempo real do sistema completo. Por outra parte, tamén se estuda a aplicabilidade dos sistemas 4G a sistemas de transporte públicos. Os sistemas de comunicacións e sinalización son unha parte vital para os sistemas de transporte ferroviario e metro. As comunicacións sen fíos utilizadas por estes sistemas deben ser robustas e proporcionar unha alta fiabilidade para permitir a supervisión, control e seguridade do tráfico ferroviario. Para levar a cabo esta avaliación de viabilidade realízanse simulacións de redes de comunicacións LTE en contornos de transporte ferroviarios, comprobando o cumprimento dos requisitos de fiabilidade e seguridade. Realízanse diferentes simulacións do sistema de comunicacións para poder ser avaliadas e seleccionar a configuración e arquitectura do sistema máis axeitada en función do escenario considerado. Tamén se efectúan simulacións de redes baseadas en Wi-Fi, dado que é a solución máis utilizada nos metros, para confrontar os resultados cos obtidos para LTE. Para que os resultados das simulacións sexan realistas débense empregar modelos de propagación radio axeitados. Nas simulacións utilízanse tanto modelos deterministas como modelos baseados nos resultados de campañas de medida realizadas nestes escenarios. Nas simulacións empréganse os diferentes fluxos de información destes escenarios para comprobar que se cumpren os requisitos de calidade de servicio (QoS). Por exemplo, os fluxos críticos para o control ferroviario, como European Train Control System (ETCS) ou Communication-Based Train Control (CBTC), necesitan unha alta fiabilidade e un retardo mínimo nas comunicacións para garantir o correcto funcionamento do sistema.[Resumen] Los sistemas de comunicación inalámbricos de cuarta y quinta generación (4G y 5G) utilizan una capa física (PHY) basada en modulaciones multiportadora para la transmisión de datos con un gran ancho de banda. Este tipo de modulaciones han demostrado tener una alta eficiencia espectral a la vez que permiten corregir de forma sencilla los efectos del canal radio. Estos sistemas utilizan OFDMA como mecanismo para el reparto de los recursos radio disponibles entre los diferentes usuarios. Este reparto se realiza asignando un subconjunto de subportadoras a cada usuario en un instante de tiempo determinado. Esto aporta una gran flexibilidad al sistema que le permite adaptarse tanto a los requisitos de calidad de servicio de los usuarios como al estado del canal radio. La capa de acceso al medio (MAC) de estos sistemas se encarga de configurar los diversos parámetros proporcionados por la capa física OFDMA, además de gestionar los diversos flujos de información de cada usuario, transformando los paquetes de capas superiores en paquetes de la capa física. En este trabajo se estudia el diseño e implementación de las capas MAC y PHY de sistemas de comunicación 4G además de su aplicabilidad en sistemas de transporte ferroviarios. Por una parte, se aborda el diseño e implementación en tiempo real del estándar WiMAX. Se estudian los mecanismos necesarios para establecer comunicaciones bidireccionales entre una estación base y múltiples dispositivos móviles. Además, se estudia cómo realizar esta implementación en una arquitectura hardware basada en DSPs y FPGAs, en la que se implementan las capas MAC y PHY. Dado que esta arquitectura tiene unos recursos computacionales limitados, también se estudian las necesidades de cada módulo del sistema para poder garantizar el funcionamiento en tiempo real del sistema completo. Por otra parte, también se estudia la aplicabilidad de los sistemas 4G a sistemas de transporte públicos. Los sistemas de comunicaciones y señalización son una parte vital para los sistemas de transporte ferroviario y metro. Las comunicaciones inalámbricas utilizadas por estos sistemas deben ser robustas y proporcionar una alta fiabilidad para permitir la supervisión, control y seguridad del tráfico ferroviario. Para llevar a cabo esta evaluación de viabilidad se realizan simulaciones de redes de comunicaciones LTE en entornos de transporte ferroviarios, comprobando si se cumplen los requisitos de fiabilidad y seguridad. Se realizan diferentes simulaciones del sistema de comunicaciones para poder ser evaluados y seleccionar la configuración y arquitectura del sistema más adecuada en función del escenario planteado. También se efectúan simulaciones de redes basadas en Wi-Fi, dado que es la solución más utilizada en los metros, para comparar los resultados con los obtenidos para LTE. Para que los resultados de las simulaciones sean realistas se deben utilizar modelos de propagación radio apropiados. En las simulaciones se utilizan tanto modelos deterministas como modelos basados en los resultados de campañas de medida realizadas en estos escenarios. En las simulaciones se utilizan los diferentes flujos de información de estos escenarios para comprobar que se cumplen sus requisitos de calidad de servicio. Por ejemplo, los flujos críticos para el control ferroviario, como European Train Control System (ETCS) o Communication-Based Train Control (CBTC), necesitan una alta fiabilidad y un retardo bajo en las comunicaciones para garantizar el correcto funcionamiento del sistema.[Abstract] The fourth and fifth generation wireless communication systems (4G and 5G) use a physical layer (PHY) based on multicarrier modulations for data transmission using high bandwidth. This type of modulations has shown to provide high spectral efficiency while allowing low complexity radio channel equalization. These systems use OFDMA as a mechanism for distributing the available radio resources among different users. This allocation is done by assigning a subset of subcarriers to each user in a given instant of time. This provides great flexibility to the system that allows it to adapt to both the quality of service requirements of users and the radio channel state. The media access layer (MAC) of these systems is in charge of configuring the multiple OFDMA PHY layer parameters, in addition to managing the data flows of each user, transforming the higher layer packets into PHY layer packets. This work studies the design and implementation of MAC and PHY layers of 4G communication systems as well as their applicability in rail transport systems. On the one hand, the design and implementation in real time of the WiMAX standard is addressed. The required mechanisms to establish bidirectional communications between a base station and several mobile devices are also evaluated. Moreover, a MAC layer and PHY layer implementation is presented, using a hardware architecture based in DSPs and FPGAs. Since this architecture has limited computational resources, the requirements of each processing block of the system are also studied in order to guarantee the real time operation of the complete system. On the other hand, the applicability of 4G systems to public transportation systems is also studied. Communications and signaling systems are a vital part of rail and metro transport systems. The wireless communications used by these systems must be robust and provide high reliability to enable the supervision, control and safety of rail traffic. To carry out this feasibility assessment, LTE communications network simulations are performed in rail transport environments to verify that reliability and safety requirements are met. Several simulations are carried out in order to evaluate the system performance and select the most appropriate system configuration in each case. Simulations of Wi-Fi based networks are also carried out, since it is the most used solution in subways, to compare the results with those obtained for LTE. To perform the simulations correctly, appropriate radio propagation models must be used. Both deterministic models and models based on the results of measurement campaigns in these scenarios are used in the simulations. The simulations use the different information flows present in the railway transportation systems to verify that its quality of service requirements are met. For example, critical flows for railway control, such as the European Train Control System (ETCS) or Communication-Based Train Control (CBTC), require high reliability and low delay communications to ensure the proper functioning of the system

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    corecore