14 research outputs found

    Integrating multiple clusters for compute-intensive applications

    Get PDF
    Multicluster grids provide one promising solution to satisfying the growing computational demands of compute-intensive applications. However, it is challenging to seamlessly integrate all participating clusters in different domains into a single virtual computational platform. In order to fully utilize the capabilities of multicluster grids, computer scientists need to deal with the issue of joining together participating autonomic systems practically and efficiently to execute grid-enabled applications. Driven by several compute-intensive applications, this theses develops a multicluster grid management toolkit called Pelecanus to bridge the gap between user\u27s needs and the system\u27s heterogeneity. Application scientists will be able to conduct very large-scale execution across multiclusters with transparent QoS assurance. A novel model called DA-TC (Dynamic Assignment with Task Containers) is developed and is integrated into Pelecanus. This model uses the concept of a task container that allows one to decouple resource allocation from resource binding. It employs static load balancing for task container distribution and dynamic load balancing for task assignment. The slowest resources become useful rather than be bottlenecks in this manner. A cluster abstraction is implemented, which not only provides various cluster information for the DA-TC execution model, but also can be used as a standalone toolkit to monitor and evaluate the clusters\u27 functionality and performance. The performance of the proposed DA-TC model is evaluated both theoretically and experimentally. Results demonstrate the importance of reducing queuing time in decreasing the total turnaround time for an application. Experiments were conducted to understand the performance of various aspects of the DA-TC model. Experiments showed that our model could significantly reduce turnaround time and increase resource utilization for our targeted application scenarios. Four applications are implemented as case studies to determine the applicability of the DA-TC model. In each case the turnaround time is greatly reduced, which demonstrates that the DA-TC model is efficient for assisting application scientists in conducting their research. In addition, virtual resources were integrated into the DA-TC model for application execution. Experiments show that the execution model proposed in this thesis can work seamlessly with multiple hybrid grid/cloud resources to achieve reduced turnaround time

    QoS-aware predictive workflow scheduling

    Full text link
    This research places the basis of QoS-aware predictive workflow scheduling. This research novel contributions will open up prospects for future research in handling complex big workflow applications with high uncertainty and dynamism. The results from the proposed workflow scheduling algorithm shows significant improvement in terms of the performance and reliability of the workflow applications

    Scheduling Rigid, Evolving Applications on Homogeneous Resources

    Get PDF
    Classical applications executed on clusters or grids are either rigid/moldable or workflow-based. However, the increase of resource computing and storage capabilities has leveraged more complex applications. For example, some code coupling applications exhibit changing resource requirements without being a workflow. Executing them on current batch schedulers leads to an inefficient resource usage, as a block of resources has to be reserved for the whole duration of the application. This paper studies the problem of offline scheduling of rigid and evolving applications on homogeneous resources. It proposes several scheduling algorithms and evaluates them based on simulations. Results show that significant makespan and resource usage improvement can be achieved with short scheduling computing time

    Performance-aware task scheduling in multi-core computers

    Get PDF
    Multi-core systems become more and more popular as they can satisfy the increasing computation capacity requirements of complex applications. Task scheduling strategy plays a key role in this vision and ensures that the task processing is both Quality-of-Service (QoS, in this thesis, refers to deadline) satisfied and energy-efficient. In this thesis, we develop task scheduling strategies for multi-core computing systems. We start by looking at two objectives of a multi-core computing system. The first objective aims at ensuring all tasks can satisfy their time constraints (i.e. deadline), while the second strives to minimize the overall energy consumption of the platform. We develop three power-aware scheduling strategies in virtualized systems managed by Xen. Comparing with the original scheduling strategy in Xen, these scheduling algorithms are able to reduce energy consumption without reducing the performance for the jobs. Then, we find that modelling the makespan of a task (before execution) accurately is very important for making scheduling decisions. Our studies show that the discrepancy between the assumption of (commonly used) sequential execution and the reality of time sharing execution may lead to inaccurate calculation of the task makespan. Thus, we investigate the impact of the time sharing execution on the task makespan, and propose the method to model and determine the makespan with the time-sharing execution. Thereafter, we extend our work to a more complex scenario: scheduling DAG applications for time sharing systems. Based on our time-sharing makespan model, we further develop the scheduling strategies for DAG jobs in time-sharing execution, which achieves more effective at task execution. Finally, as the resource interference also makes a big difference to the performance of co-running tasks in multi-core computers (which may further influence the scheduling decision making), we investigate the influential factors that impact on the performance when the tasks ii are co-running on a multicore computer and propose the machine learning-based prediction frameworks to predict the performance of the co-running tasks. The experimental results show that the techniques proposed in this thesis is effective

    Enabling 5G Edge Native Applications

    Get PDF

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI
    corecore