1,213 research outputs found

    Data-Driven Intelligent Scheduling For Long Running Workloads In Large-Scale Datacenters

    Get PDF
    Cloud computing is becoming a fundamental facility of society today. Large-scale public or private cloud datacenters spreading millions of servers, as a warehouse-scale computer, are supporting most business of Fortune-500 companies and serving billions of users around the world. Unfortunately, modern industry-wide average datacenter utilization is as low as 6% to 12%. Low utilization not only negatively impacts operational and capital components of cost efficiency, but also becomes the scaling bottleneck due to the limits of electricity delivered by nearby utility. It is critical and challenge to improve multi-resource efficiency for global datacenters. Additionally, with the great commercial success of diverse big data analytics services, enterprise datacenters are evolving to host heterogeneous computation workloads including online web services, batch processing, machine learning, streaming computing, interactive query and graph computation on shared clusters. Most of them are long-running workloads that leverage long-lived containers to execute tasks. We concluded datacenter resource scheduling works over last 15 years. Most previous works are designed to maximize the cluster efficiency for short-lived tasks in batch processing system like Hadoop. They are not suitable for modern long-running workloads of Microservices, Spark, Flink, Pregel, Storm or Tensorflow like systems. It is urgent to develop new effective scheduling and resource allocation approaches to improve efficiency in large-scale enterprise datacenters. In the dissertation, we are the first of works to define and identify the problems, challenges and scenarios of scheduling and resource management for diverse long-running workloads in modern datacenter. They rely on predictive scheduling techniques to perform reservation, auto-scaling, migration or rescheduling. It forces us to pursue and explore more intelligent scheduling techniques by adequate predictive knowledges. We innovatively specify what is intelligent scheduling, what abilities are necessary towards intelligent scheduling, how to leverage intelligent scheduling to transfer NP-hard online scheduling problems to resolvable offline scheduling issues. We designed and implemented an intelligent cloud datacenter scheduler, which automatically performs resource-to-performance modeling, predictive optimal reservation estimation, QoS (interference)-aware predictive scheduling to maximize resource efficiency of multi-dimensions (CPU, Memory, Network, Disk I/O), and strictly guarantee service level agreements (SLA) for long-running workloads. Finally, we introduced a large-scale co-location techniques of executing long-running and other workloads on the shared global datacenter infrastructure of Alibaba Group. It effectively improves cluster utilization from 10% to averagely 50%. It is far more complicated beyond scheduling that involves technique evolutions of IDC, network, physical datacenter topology, storage, server hardwares, operating systems and containerization. We demonstrate its effectiveness by analysis of newest Alibaba public cluster trace in 2017. We are the first of works to reveal the global view of scenarios, challenges and status in Alibaba large-scale global datacenters by data demonstration, including big promotion events like Double 11 . Data-driven intelligent scheduling methodologies and effective infrastructure co-location techniques are critical and necessary to pursue maximized multi-resource efficiency in modern large-scale datacenter, especially for long-running workloads

    Adaptive prediction models for data center resources utilization estimation

    Get PDF
    Accurate estimation of data center resource utilization is a challenging task due to multi-tenant co-hosted applications having dynamic and time-varying workloads. Accurate estimation of future resources utilization helps in better job scheduling, workload placement, capacity planning, proactive auto-scaling, and load balancing. The inaccurate estimation leads to either under or over-provisioning of data center resources. Most existing estimation methods are based on a single model that often does not appropriately estimate different workload scenarios. To address these problems, we propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. The proposed approach trains a classifier based on statistical features of historical resources usage to decide the appropriate prediction model to use for given resource utilization observations collected during a specific time interval. We evaluated our approach on real datasets and compared the results with multiple baseline methods. The experimental evaluation shows that the proposed approach outperforms the state-of-the-art approaches and delivers 6% to 27% improved resource utilization estimation accuracy compared to baseline methods.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitiveness (TIN2015-65316-P and IJCI2016-27485), the Generalitat de Catalunya (2014-SGR-1051), and NPRP grant # NPRP9-224-1-049 from the Qatar National Research Fund (a member of Qatar Foundation) and University of the Punjab, Pakistan.Peer ReviewedPostprint (published version

    Evidence-Efficient Affinity Propagation Scheme for Virtual Machine Placement in Data Center

    Get PDF
    In cloud data center, without efficient virtual machine placement, the overload of any types of resources on physical machines (PM) can easily cause the waste of other types of resources, and frequent costly virtual machine (VM) migration, which further negatively affects quality of service (QoS). To address this problem, in this paper we propose an evidence-efficient affinity propagation scheme for VM placement (EEAP-VMP), which is capable of balancing the workload across various types of resources on the running PMs. Our approach models the problem of searching the desirable destination hosts for the liveVMmigration as the propagation of responsibility and availability. The sum of responsibility and availability represent the accumulated evidence for the selection of candidate destination hosts for the VMs to be migrated. Further, in combination with the presented selection criteria for destination hosts. Extensive experiments are conducted to compare our EEAP-VMP method with the previousVMplacement methods. The experimental results demonstrate that the EEAP-VMP method is highly effective on reducing VM migrations and energy consumption of data centers and in balancing the workload of PMs

    Resource Aware GPU Scheduling in Kubernetes Infrastructure

    Get PDF
    Nowadays, there is an ever-increasing number of artificial intelligence inference workloads pushed and executed on the cloud. To effectively serve and manage the computational demands, data center operators have provisioned their infrastructures with accelerators. Specifically for GPUs, support for efficient management lacks, as state-of-the-art schedulers and orchestrators, threat GPUs only as typical compute resources ignoring their unique characteristics and application properties. This phenomenon combined with the GPU over-provisioning problem leads to severe resource under-utilization. Even though prior work has addressed this problem by colocating applications into a single accelerator device, its resource agnostic nature does not manage to face the resource under-utilization and quality of service violations especially for latency critical applications. In this paper, we design a resource aware GPU scheduling framework, able to efficiently colocate applications on the same GPU accelerator card. We integrate our solution with Kubernetes, one of the most widely used cloud orchestration frameworks. We show that our scheduler can achieve 58.8% lower end-to-end job execution time 99%-ile, while delivering 52.5% higher GPU memory usage, 105.9% higher GPU utilization percentage on average and 44.4% lower energy consumption on average, compared to the state-of-the-art schedulers, for a variety of ML representative workloads

    Computing at massive scale: Scalability and dependability challenges

    Get PDF
    Large-scale Cloud systems and big data analytics frameworks are now widely used for practical services and applications. However, with the increase of data volume, together with the heterogeneity of workloads and resources, and the dynamic nature of massive user requests, the uncertainties and complexity of resource management and service provisioning increase dramatically, often resulting in poor resource utilization, vulnerable system dependability, and user-perceived performance degradations. In this paper we report our latest understanding of the current and future challenges in this particular area, and discuss both existing and potential solutions to the problems, especially those concerned with system efficiency, scalability and dependability. We first introduce a data-driven analysis methodology for characterizing the resource and workload patterns and tracing performance bottlenecks in a massive-scale distributed computing environment. We then examine and analyze several fundamental challenges and the solutions we are developing to tackle them, including for example incremental but decentralized resource scheduling, incremental messaging communication, rapid system failover, and request handling parallelism. We integrate these solutions with our data analysis methodology in order to establish an engineering approach that facilitates the optimization, tuning and verification of massive-scale distributed systems. We aim to develop and offer innovative methods and mechanisms for future computing platforms that will provide strong support for new big data and IoE (Internet of Everything) applications

    Data center's telemetry reduction and prediction through modeling techniques

    Get PDF
    Nowadays, Cloud Computing is widely used to host and deliver services over the Internet. The architecture of clouds is complex due to its heterogeneous nature of hardware and is hosted in large scale data centers. To effectively and efficiently manage such complex infrastructure, constant monitoring is needed. This monitoring generates large amounts of telemetry data streams (e.g. hardware utilization metrics) which are used for multiple purposes including problem detection, resource management, workload characterization, resource utilization prediction, capacity planning, and job scheduling. These telemetry streams require costly bandwidth utilization and storage space particularly at medium-long term for large data centers. Moreover, accurate future estimation of these telemetry streams is a challenging task due to multi-tenant co-hosted applications and dynamic workloads. The inaccurate estimation leads to either under or over-provisioning of data center resources. In this Ph.D. thesis, we propose to improve the prediction accuracy and reduce the bandwidth utilization and storage space requirement with the help of modeling and prediction methods from machine learning. Most of the existing methods are based on a single model which often does not appropriately estimate different workload scenarios. Moreover, these prediction methods use a fixed size of observation windows which cannot produce accurate results because these are not adaptively adjusted to capture the local trends in the recent data. Therefore, the estimation method trains on fixed sliding windows use an irrelevant large number of observations which yields inaccurate estimations. In summary, we C1) efficiently reduce bandwidth and storage for telemetry data through real-time modeling using Markov chain model. C2) propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. C3) propose a deep learning-based adaptive window size selection method which dynamically limits the sliding window size to capture the local trend in the latest resource utilization for building estimation model.Hoy en día, Cloud Computing se usa ampliamente para alojar y prestar servicios a través de Internet. La arquitectura de las nubes es compleja debido a su naturaleza heterogénea del hardware y está alojada en centros de datos a gran escala. Para administrar de manera efectiva y eficiente dicha infraestructura compleja, se necesita un monitoreo constante. Este monitoreo genera grandes cantidades de flujos de datos de telemetría (por ejemplo, métricas de utilización de hardware) que se utilizan para múltiples propósitos, incluyendo detección de problemas, gestión de recursos, caracterización de carga de trabajo, predicción de utilización de recursos, planificación de capacidad y programación de trabajos. Estas transmisiones de telemetría requieren una utilización costosa del ancho de banda y espacio de almacenamiento, particularmente a mediano y largo plazo para grandes centros de datos. Además, la estimación futura precisa de estas transmisiones de telemetría es una tarea difícil debido a las aplicaciones cohospedadas de múltiples inquilinos y las cargas de trabajo dinámicas. La estimación inexacta conduce a un suministro insuficiente o excesivo de los recursos del centro de datos. En este Ph.D. En la tesis, proponemos mejorar la precisión de la predicción y reducir la utilización del ancho de banda y los requisitos de espacio de almacenamiento con la ayuda de métodos de modelado y predicción del aprendizaje automático. La mayoría de los métodos existentes se basan en un modelo único que a menudo no estima adecuadamente diferentes escenarios de carga de trabajo. Además, estos métodos de predicción utilizan un tamaño fijo de ventanas de observación que no pueden producir resultados precisos porque no se ajustan adaptativamente para capturar las tendencias locales en los datos recientes. Por lo tanto, el método de estimación entrena en ventanas corredizas fijas utiliza un gran número de observaciones irrelevantes que produce estimaciones inexactas. En resumen, C1) reducimos eficientemente el ancho de banda y el almacenamiento de datos de telemetría a través del modelado en tiempo real utilizando el modelo de cadena de Markov. C2) proponer un método novedoso para identificar de forma adaptativa y automática el modelo más apropiado para estimar con precisión la utilización de los recursos del centro de datos. C3) proponer un método de selección de tamaño de ventana adaptativo basado en el aprendizaje profundo que limita dinámicamente el tamaño de ventana deslizante para capturar la tendencia local en la última utilización de recursos para el modelo de estimación de construcción.Postprint (published version
    • …
    corecore