4,538 research outputs found

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    Resource Management in Multimedia Networked Systems

    Get PDF
    Error-free multimedia data processing and communication includes providing guaranteed services such as the colloquial telephone. A set of problems have to be solved and handled in the control-management level of the host and underlying network architectures. We discuss in this paper \u27resource management\u27 at the host and network level, and their cooperation to achieve global guaranteed transmission and presentation services, which means end-to-end guarantees. The emphasize is on \u27network resources\u27 (e.g., bandwidth, buffer space) and \u27host resources\u27 (e.g., CPU processing time) which need to be controlled in order to satisfy the Quality of Service (QoS) requirements set by the users of the multimedia networked system. The control of the specified resources involves three actions: (1) properly allocate resources (end-to-end) during the multimedia call establishment, so that traffic can flow according to the QoS specification; (2) control resource allocation during the multimedia transmission; (3) adapt to changes when degradation of system components occurs. These actions imply the necessity of: (a) new services, such as admission services, at the hosts and intermediate network nodes; (b) new protocols for establishing connections which satisfy QoS requirements along the path from send to receiver(s), such as resource reservation protocol; (c) new control algorithms for delay, rate and error control; (d) new resource monitoring protocols for reporting system changes, such as resource administration protocol; (e) new adaptive schemes for dynamic resource allocation to respond to system changes; and (f) new architectures at the hosts and switches to accommodate the resource management entities. This article gives an overview of services, mechanisms and protocols for resource management as outlined above

    Integrating personal media and digital TV with QoS guarantees using virtualized set-top boxes: architecture and performance measurements

    Get PDF
    Nowadays, users consume a lot of functionality in their home coming from a service provider located in the Internet. While the home network is typically shielded off as much as possible from the `outside world', the supplied services could be greatly extended if it was possible to use local information. In this article, an extended service is presented that integrates the user's multimedia content, scattered over multiple devices in the home network, into the Electronic Program Guide (EPG) of the Digital TV. We propose to virtualize the set-top box, by migrating all functionality except user interfacing to the service provider infrastructure. The media in the home network is discovered through standard Universal Plug and Play (UPnP), of which the QoS functionality is exploited to ensure high quality playback over the home network, that basically is out of the control of the service provider. The performance of the subsystems are analysed

    Academic Computing Newsletter: January 1997

    Get PDF
    Academic Computing Newsletter (Vol 12 Number 2, January 1997) is published by Academic Computing Services, State University of New York, College at Brockport. This issue highlights the Educational Technology Initiative (ETI) proposals, an upcoming Conference on Instructional Technology, workshops, and new hardware and software.https://digitalcommons.brockport.edu/lits_news/1056/thumbnail.jp

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    ImpaCT2 project preliminary study 2: promoting achievement: pupils, teachers and contexts

    Get PDF
    • …
    corecore