2,886 research outputs found

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Leveraging Semantic Web Technologies for Managing Resources in a Multi-Domain Infrastructure-as-a-Service Environment

    Full text link
    This paper reports on experience with using semantically-enabled network resource models to construct an operational multi-domain networked infrastructure-as-a-service (NIaaS) testbed called ExoGENI, recently funded through NSF's GENI project. A defining property of NIaaS is the deep integration of network provisioning functions alongside the more common storage and computation provisioning functions. Resource provider topologies and user requests can be described using network resource models with common base classes for fundamental cyber-resources (links, nodes, interfaces) specialized via virtualization and adaptations between networking layers to specific technologies. This problem space gives rise to a number of application areas where semantic web technologies become highly useful - common information models and resource class hierarchies simplify resource descriptions from multiple providers, pathfinding and topology embedding algorithms rely on query abstractions as building blocks. The paper describes how the semantic resource description models enable ExoGENI to autonomously instantiate on-demand virtual topologies of virtual machines provisioned from cloud providers and are linked by on-demand virtual connections acquired from multiple autonomous network providers to serve a variety of applications ranging from distributed system experiments to high-performance computing

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    Mobile Cloud Support for Semantic-Enriched Speech Recognition in Social Care

    Get PDF
    Nowadays, most users carry high computing power mobile devices where speech recognition is certainly one of the main technologies available in every modern smartphone, although battery draining and application performance (resource shortage) have a big impact on the experienced quality. Shifting applications and services to the cloud may help to improve mobile user satisfaction as demonstrated by several ongoing efforts in the mobile cloud area. However, the quality of speech recognition is still not sufficient in many complex cases to replace the common hand written text, especially when prompt reaction to short-term provisioning requests is required. To address the new scenario, this paper proposes a mobile cloud infrastructure to support the extraction of semantics information from speech recognition in the Social Care domain, where carers have to speak about their patients conditions in order to have reliable notes used afterward to plan the best support. We present not only an architecture proposal, but also a real prototype that we have deployed and thoroughly assessed with different queries, accents, and in presence of load peaks, in our experimental mobile cloud Platform as a Service (PaaS) testbed based on Cloud Foundry

    Towards a secure service provisioning framework in a Smart city environment

    Get PDF
    © 2017 Elsevier B.V. Over the past few years the concept of Smart cities has emerged to transform urban areas into connected and well informed spaces. Services that make smart cities “smart” are curated by using data streams of smart cities i.e., inhabitants’ location information, digital engagement, transportation, environment and local government data. Accumulating and processing of these data streams raise security and privacy concerns at individual and community levels. Sizeable attempts have been made to ensure the security and privacy of inhabitants’ data. However, the security and privacy issues of smart cities are not only confined to inhabitants; service providers and local governments have their own reservations — service provider trust, reliability of the sensed data, and data ownership, to name a few. In this research we identified a comprehensive list of stakeholders and modelled their involvement in smart cities by using the Onion Model approach. Based on the model we present a security and privacy-aware framework for service provisioning in smart cities, namely the ‘Smart Secure Service Provisioning’ (SSServProv) Framework. Unlike previous attempts, our framework provides end-to-end security and privacy features for trustable data acquisition, transmission, processing and legitimate service provisioning. The proposed framework ensures inhabitants’ privacy, and also guarantees integrity of services. It also ensures that public data is never misused by malicious service providers. To demonstrate the efficacy of SSServProv we developed and tested core functionalities of authentication, authorisation and lightweight secure communication protocol for data acquisition and service provisioning. For various smart cities service provisioning scenarios we verified these protocols by an automated security verification tool called Scyther

    Agile management and interoperability testing of SDN/NFV-enriched 5G core networks

    Get PDF
    In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks
    • 

    corecore