7,286 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Modular architecture providing convergent and ubiquitous intelligent connectivity for networks beyond 2030

    Get PDF
    The transition of the networks to support forthcoming beyond 5G (B5G) and 6G services introduces a number of important architectural challenges that force an evolution of existing operational frameworks. Current networks have introduced technical paradigms such as network virtualization, programmability and slicing, being a trend known as network softwarization. Forthcoming B5G and 6G services imposing stringent requirements will motivate a new radical change, augmenting those paradigms with the idea of smartness, pursuing an overall optimization on the usage of network and compute resources in a zero-trust environment. This paper presents a modular architecture under the concept of Convergent and UBiquitous Intelligent Connectivity (CUBIC), conceived to facilitate the aforementioned transition. CUBIC intends to investigate and innovate on the usage, combination and development of novel technologies to accompany the migration of existing networks towards Convergent and Ubiquitous Intelligent Connectivity (CUBIC) solutions, leveraging Artificial Intelligence (AI) mechanisms and Machine Learning (ML) tools in a totally secure environment

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    The TUCAN3G project: wireless technologies for isolated rural communities in developing countries based on 3G small-cell deployments

    Get PDF
    Recent years have witnessed a massive penetration of cellular systems in developing countries. However, isolated rural areas (sparsely inhabited by low-income population) have been disregarded because classical access and backhaul technologies do not ensure the return on investment. This article presents innovative techno-economical solutions to provide these areas with cellular voice and data services. We first analyze the general characteristics of isolated rural communities, and based on this information, low-cost solutions are designed for both access (using 3G access points) and backhaul networks (using non-carrier grade equipment as WiFi for long distances or WiMAX in non-licensed bands). Subsequently, a study of population-dependent income vs. costs is presented, and a new business model is proposed involving mobile network operators, rural operators, and infrastructure providers. In order to test these solutions, we have built two demonstration platforms in the Peruvian jungle that have allowed validation of the technical feasibility of the solution, verifying the business model assumptions and the scalability of the initiative.Peer ReviewedPostprint (author's final draft

    Final report on dissemination, regulation, standardization, exploitation & training : D6.3

    Get PDF
    In D6.1 deliverable project dissemination, exploitation and training plans, as well as standardization & regulatory approach strategy was presented. The D6.2 reported on the necessary updates of these strategies and the actions taken by the partners in line with them, as well as the obtained results. In this D6.3 deliverable, a full set of project dissemination activities, standardization & regulatory contributions as well as an operator’s “cook book” outlining steps necessary for full deployment of ON functionality and services, are presented.Deliverable D6.3 del projecte OneFITPostprint (author’s final draft

    Smart City Development with Digital Twin Technology

    Get PDF
    Growing urban areas are major consumers of natural resources, energy and raw materials. Understanding cities´ urban metabolism is salient when developing sustainable and resilient cities. This paper addresses concepts of smart city and digital twin technology as means to foster more sustainable urban development. Smart city has globally been well adopted concept in urban development. With smart city development cities aim to optimize overall performance of the city, its infrastructures, processes and services, but also to improve socio-economic wellbeing. Dynamic digital twins are constituted to form real-time connectivity between virtual and physical objects. Digital twin combines virtual objects to its physical counterparts. This conceptual paper provides additionally examples from dynamic digital twin platforms and digital twin of Helsinki, Finland
    corecore