4,859 research outputs found

    New Generation Sensor Web Enablement

    Get PDF
    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement

    METRICC: Harnessing Comparable Corpora for Multilingual Lexicon Development

    Get PDF
    International audienceResearch on comparable corpora has grown in recent years bringing about the possibility of developing multilingual lexicons through the exploitation of comparable corpora to create corpus-driven multilingual dictionaries. To date, this issue has not been widely addressed. This paper focuses on the use of the mechanism of collocational networks proposed by Williams (1998) for exploiting comparable corpora. The paper first provides a description of the METRICC project, which is aimed at the automatically creation of comparable corpora and describes one of the crawlers developed for comparable corpora building, and then discusses the power of collocational networks for multilingual corpus-driven dictionary development

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollstĂ€ndig und enthalten auch ungĂŒltige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die ErklĂ€rbarkeit und VerstĂ€ndlichkeit von Wissensgraphinhalten fĂŒr Nutzer. In Anwendungen ist darĂŒber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen EntitĂ€ten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch fĂŒr tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz ĂŒber dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit ErklĂ€rungen fĂŒr Nutzer. Die Dissertation umfasst folgende BeitrĂ€ge: Insbesondere leistet die Dissertation folgende BeitrĂ€ge: ‱ Zur Wissensgraph-Erweiterung prĂ€sentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch HinzufĂŒgen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit LĂŒcken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche ErklĂ€rungen liefert. ‱ Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen ReprĂ€sentationen fĂŒr fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken fĂŒr die RegelqualitĂ€t verwendet. Experimente zeigen, dass RuLES die QualitĂ€t der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. ‱ Zur UnterstĂŒtzung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von ErklĂ€rungen fĂŒr Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen fĂŒr Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und QualitĂ€t der entdeckten ErklĂ€rungen deutlich verbessert. Die generierten unterstĂŒtzen ErklĂ€rungen unterstĂŒtze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. ‱ Zur UnterstĂŒtzung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen EntitĂ€ts-Clustern mit ErklĂ€rungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-ErklĂ€rung besteht aus einer Kombination von Relationen zwischen den EntitĂ€ten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- QualitĂ€t und die Cluster-ErklĂ€rbarkeit durch iteratives VerschrĂ€nken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher QualitĂ€t berechnet und dass die Cluster-ErklĂ€rungen fĂŒr Nutzer informativ sind

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in ïŹltering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modiïŹed accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: ‱ We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ proïŹles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. ‱ We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for ïŹnding the smallest counterfactual explanations. ‱ We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-speciïŹc item representations. We evaluate all proposed models and methods with real user studies and demonstrate their beneïŹts at achieving explainability and scrutability in recommender systems.Unsere zunehmende AbhĂ€ngigkeit von komplexen Algorithmen fĂŒr maschinelle Empfehlungen erfordert Modelle und Methoden fĂŒr erklĂ€rbare, nachvollziehbare und vertrauenswĂŒrdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklĂ€rbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen Ă€ndern, muss dessen Entscheidungsprozess nachvollziehbar sein. ErklĂ€rbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die LĂŒcke zwischen dem von uns erwarteten und dem tatsĂ€chlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stĂ€rken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu ïŹltern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene ErklĂ€rungen fĂŒr deren personalisierte Empfehlungen. Diese ErklĂ€rungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre frĂŒheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können ErklĂ€rungen fĂŒr den Fall, dass unerwĂŒnschte Inhalte empfohlen werden, wertvolle Informationen darĂŒber enthalten, wie das Verhalten des Systems entsprechend geĂ€ndert werden kann. In dieser Dissertation stellen wir unsere BeitrĂ€ge zu ErklĂ€rbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. ‱ Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc ErklĂ€rungen fĂŒr die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese ErklĂ€rungen zeigen Beziehungen zwischen BenutzerproïŹlen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die ErklĂ€rungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. ‱ Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von ErklĂ€rungen fĂŒr PageRank-basierte Empfehlungsdienste. PRINCE-ErklĂ€rungen sind fĂŒr Benutzer verstĂ€ndlich, da sie Teilmengen frĂŒherer Nutzerinteraktionen darstellen, die fĂŒr die erhaltenen Empfehlungen verantwortlich sind. PRINCE-ErklĂ€rungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um prĂ€zise ErklĂ€rungen zu ïŹnden. ‱ Wir prĂ€sentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die QualitĂ€t der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und ErklĂ€rungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspeziïŹscher Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich ErklĂ€rbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • 

    corecore