1,478 research outputs found

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    A Survey of Resource Management Challenges in Multi-cloud Environment: Taxonomy and Empirical Analysis

    Get PDF
    Cloud computing has seen a great deal of interest by researchers and industrial firms since its first coined. Different perspectives and research problems, such as energy efficiency, security and threats, to name but a few, have been dealt with and addressed from cloud computing perspective. However, cloud computing environment still encounters a major challenge of how to allocate and manage computational resources efficiently. Furthermore, due to the different architectures and cloud computing networks and models used (i.e., federated clouds, VM migrations, cloud brokerage), the complexity of resource management in the cloud has been increased dramatically. Cloud providers and service consumers have the cloud brokers working as the intermediaries between them, and the confusion among the cloud computing parties (consumers, brokers, data centres and service providers) on who is responsible for managing the request of cloud resources is a key issue. In a traditional scenario, upon renting the various cloud resources from the providers, the cloud brokers engage in subletting and managing these resources to the service consumers. However, providers’ usually deal with many brokers, and vice versa, and any dispute of any kind between the providers and the brokers will lead to service unavailability, in which the consumer is the only victim. Therefore, managing cloud resources and services still needs a lot of attention and effort. This paper expresses the survey on the systems of the cloud brokerage resource management issues in multi-cloud environments

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Analysis and selection of the simulation environment

    Get PDF
    This document provides the initial report of the Simulation work package (Work Package 4,WP4) of the CATNETS project. It contains an analisys of the requirements for a simulation tool to be used in CATNETS and an evaluation of a number of grid and general purpose simulators with respect to the selected requirements. A reasoned choice of a suitable simulator is performed based on the evaluation conducted. -- Diese Arbeit analysiert die Anforderungen an eine Simulationsumgebung für die Analyse der Katallaxie. Anhand von Kennzahlen wird die Auswahl der Simulationsumgebung bestimmt.Grid Computing

    Resource Brokering in Grid Computing

    Get PDF
    Grid Computing has emerged in the academia and evolved towards the bases of what is currently known as Cloud Computing and Internet of Things (IoT). The vast collection of resources that provide the nature for Grid Computing environment is very complex; multiple administrative domains control access and set policies to the shared computing resources. It is a decentralized environment with geographically distributed computing and storage resources, where each computing resource can be modeled as an autonomous computing entity, yet collectively can work together. This is a class of Cooperative Distributed Systems (CDS). We extend this by applying characteristic of open environments to create a foundation for the next generation of computing platform where entities are free to join a computing environment to provide capabilities and take part as a collective in solving complex problems beyond the capability of a single entity. This thesis is focused on modeling “Computing” as a collective performance of individual autonomous fundamental computing elements interconnected in a “Grid” open environment structure. Each computing element is a node in the Grid. All nodes are interconnected through the “Grid” edges. Resource allocation is done at the edges of the “Grid” where the connected nodes are simply used to perform computation. The analysis put forward in this thesis identifies Grid Computing as a form of computing that occurs at the resource level. The proposed solution, coupled with advancements in technology and evolution of new computing paradigms, sets a new direction for grid computing research. The approach here is a leap forward with the well-defined set of requirements and specifications based on open issues with the focus on autonomy, adaptability and interdependency. The proposed approach examines current model for Grid Protocol Architecture and proposes an extension that addresses the open issues in the diverged set of solutions that have been created

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks
    corecore