5,574 research outputs found

    Resource Allocation in Relay-based Satellite and Wireless Communication Networks

    Get PDF
    A two-level bandwidth allocation scheme is proposed for a slotted Time-Division Multiple Access high data rate relay satellite communication link to provide efficient and fair channel utilization. The long-term allocation is implemented to provide per-flow/per-user Quality-of-Service guarantees and shape the average behavior. The time-varying short-term allocation is determined by solving an optimal timeslot scheduling problem based on the requests and other parameters. Through extensive simulations, the performance of a suitable MAC protocol with two-level bandwidth allocation is analyzed and compared with that of the existing static fixed-assignment scheme in terms of end-to-end delay and successful throughput. It is also shown that pseudo-proportional fairness is achieved for our hybrid protocol. We study rate control systems with heterogeneous time-varying propagation delays, based on analytic fluid flow models composed of first-order delay-differential equations. Both single-flow and multi-flow system models are analyzed, with special attention paid to the Mitra-Seery algorithm. The stationary solutions are investigated. For the fluctuating solutions, their dynamic behavior is analyzed in detail, analytically and numerically, in terms of amplitude, transient behavior, fairness and adaptability, etc.. Especially the effects of heterogeneous time-varying delays are investigated. It is shown that with proper parameter design the system can achieve stable behavior with close to pointwise proportional fairness among flows. Finally we investigate the resource allocation in 802.16j multi-hop relay systems with rate fairness constraints for two mutually exclusive options: transparent and non-transparent relay systems (T-RS and NT-RS). Single-Input Single-Output and Multi-Input Multi-Output antenna systems are considered in the links between the Base Station (BS) and Relay Stations (RS). 1 and 3 RSs per sector are considered. The Mobile Station (MS) association rule, which determines the access station (BS or RS) for each MS, is also studied. Two rules: Highest MCS scheme with the highest modulation and coding rate, and Highest (Mod) ESE scheme with the highest (modified) effective spectrum efficiency, are studied along with the optimal rule that maximizes system capacity with rate fairness constraints. Our simulation results show that the highest capacity is always achieved by NT-RS with 3 RSs per sector in distributed scheduling mode, and that the Highest (Mod) ESE scheme performs closely to the optimal rule in terms of system capacity

    Collaborative Multi-Resource Allocation in Terrestrial-Satellite Network Towards 6G

    Get PDF
    Terrestrial-satellite networks (TSNs) are envisioned to play a significant role in the sixth-generation (6G) wireless networks. In such networks, hot air balloons are useful as they can relay the signals between satellites and ground stations. Most existing works assume that the hot air balloons are deployed at the same height with the same minimum elevation angle to the satellites, which may not be practical due to possible route conflict with airplanes and other flight equipment. In this paper, we consider a TSN containing hot air balloons at different heights and with different minimum elevation angles, which creates the challenge of non-uniform available serving time for the communication between the hot air balloons and the satellites. Jointly considering the caching, computing, and communication (3C) resource management for both the ground-balloon-satellite links and inter-satellite laser links, our objective is to maximize the network energy efficiency. Firstly, by proposing a tapped water-filling algorithm, we schedule the traffic to relay among satellites according to the available serving time of satellites. Then, we generate a series of configuration matrices, based on which we formulate the relation between relay time and the power consumption involved in the relay among satellites. Finally, the collaborative resource allocation problem for TSN is modeled and solved by geometric programming with Taylor series approximation. Simulation results demonstrate the effectiveness of our proposed scheme

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    • …
    corecore