616 research outputs found

    Performance Analysis of Non-Orthogonal Multiple Access (NOMA) in C-RAN, H-CRAN and F-RAN for 5G Systems

    Get PDF
    The world of telecommunication is witnessing a swift transformation towards fifth generation (5G) cellular networks. The future networks present requisite needs in ubiquitous throughput, low latency, and high reliability. They are also envisioned to provide diversified services such as enhanced Mobile BroadBand (eMBB) and ultra-reliable low-latency communication (URLLC) as well as improved quality of user experience. More interestingly, a novel mobile network architecture allowing centralized processing and cloud computing has been proposed as one of the best candidates for fifth generation. It is denoted as Cloud Radio Access Network (CRAN) and Heterogeneous Cloud Radio Access Network (H-CRAN). Furthermore, the 5G architecture will be fog-like, namely fog radio access networks (F-RAN) enabling a functional split of network functionalities between cloud and edge nodes with caching and fog computing capabilities. Meanwhile non-orthogonal multiple access (NOMA) has been proposed as an promising multiple access (MA) technology for future radio access networks (RANs) to meet the heterogeneous demands for high throughput, low latency and massive connectivity. One of the main challenges of NOMA is that how well it is to be compatible with other emerging techniques for meeting the requirements of 5G. However, comprehensive performance analysis on NOMA and practical resource allocation designs in co-existence with other emerging networks have not been fully studied and investigated in the literature. This thesis focuses on potential performance enhancement brought by NOMA for the C-RAN, H-CRAN and F-RAN and is expected to address some of the aforementioned key challenges of 5G. The research work of this thesis can be divided into three parts. In the first part of our research, we focus on investigating the performance analysis of NOMA in a C-RAN. The problem of jointly optimizing user association, muting and power-bandwidth allocation is formulated for NOMA-enabled C-RANs. To solve the mixed integer programming problem, the joint problem is decomposed into two subproblems as 1) user association and muting 2) power-bandwidth allocation optimization. To deal with the first subproblem, we propose a centralized and heuristic algorithm to provide the optimal and suboptimal solutions to the remote radio head (RRH) muting problem for given bandwidth and transmit power, respectively. The second subproblem is then reformulated and we propose an optimal solution to bandwidth and power allocation subject to users data rate constraints. Moreover, for given user association and muting states, the optimal power allocation is derived in a closed-form. Simulation results show that the proposed NOMA-enabled C-RAN outperforms orthogonal multiple access (OMA)-based C-RANs in terms of total achievable rate, interference mitigation and can achieve significant fairness improvement. Our second work investigates the performance of NOMA in H-CRAN, where coordination of macro base station (MBS) and remote radio heads (RRHs) for H-CRAN with NOMA is introduced to improve network performance. We formulate the problem of jointly optimizing user association, coordinated scheduling and power allocation for NOMA-enabled H-CRANs. To efficiently solve this problem, we decompose the joint optimization problem into two subproblems as 1) user association and scheduling 2) power allocation optimization. Firstly the users are divided based on different interference they suffer. This interference-aware NOMA approach account for the inter-tier interference. Proportional fairness (PF) scheduling for NOMA is utilized to schedule users with a two-loop optimization method to enhance throughput and fairness. Based on the user scheduling scheme, optimal power allocation optimization is performed by the hierarchical decomposition approach. It is then followed by algorithm for joint scheduling and power allocation. Simulation results show that the proposed NOMA-enabled H-CRAN outperforms OMA-based H-CRANs in terms of total achievable rate and can achieve significant fairness improvement. In the third part of our research, we propose a NOMA-enabled fog-cloud structure in a novel density-aware F-RAN to tackle different aspects such as throughput and latency requirements of high and low user-density regions, in order to meet the heterogeneous requirements of eMBB and URLLC traffic. A framework of the multi-objective problem is formulated to cater the high throughput and low-latency requirements in a high and low user-density mode respectively. In the first problem, we study the joint caching placement and association strategy aiming at minimizing the average delay. To deal with the first problem, we apply McCormick envelopes and Lagrange partial relaxation method to transform it into three convex sub-problems, which is then solved by proposed distributed algorithm. The second problem is to jointly optimize transmission mode selection, subchannel assignment and power allocation to maximize the sum data rate of all fog user equipments (F-UEs) while satisfying fronthaul capacity and fog-computing access point (F-AP) power constraints. Moreover, for given transmission mode selection and subchannel assignment, the optimal power allocation is derived in a closed-form. Simulation results are provided for the proposed NOMA-enabled F-RAN framework and reveal that the ultra-low latency and high throughput can be achieved by properly utilizing the available resources

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research
    • …
    corecore