59 research outputs found

    Rate-Splitting Multiple Access for 6G -- Part I: Principles, Applications and Future Works

    Full text link
    This letter is the first part of a three-part tutorial focusing on rate-splitting multiple access (RSMA) for 6G. As Part I of the tutorial, the letter presents the basics of RSMA and its applications in light of 6G. To begin with, we first delineate the design principle and basic transmission frameworks of downlink and uplink RSMA. We then illustrate the applications of RSMA for addressing the challenges of various potential enabling technologies and use cases, consequently making it a promising next generation multiple access (NGMA) scheme for future networks such as 6G and beyond. We briefly discuss the challenges of RSMA and conclude the letter. In continuation of Part I, we will focus on the interplay of RSMA with integrated sensing and communication, and reconfigurable intelligent surfaces, respectively in Part II and Part III of this tutorial

    Técnicas de igualização adaptativas com estimativas imperfeitas do canal para os futuros sistemas 5G

    Get PDF
    Wireless communication networks have been continuously experiencing an exponential growth since their inception. The overwhelming demand for high data rates, support of a large number of users while mitigating disruptive interference are the constant research focus and it has led to the creation of new technologies and efficient techniques. Orthogonal frequency division multiplexing (OFDM) is the most common example of a technology that has come to the fore in this past decade as it provided a simple and generally ideal platform for wireless data transmission. It’s drawback of a rather high peak-to-average power ratio (PAPR) and sensitivity to phase noise, which in turn led to the adoption of alternative techniques, such as the single carrier systems with frequency domain equalization (SC-FDE) or the multi carrier systems with code division multiple access (MC-CDMA), but the nonlinear Frequency Domain Equalizers (FDE) have been of special note due to their improved performance. From these, the Iterative Block Decision Feedback Equalizer (IB-DFE) has proven itself especially promising due to its compatibility with space diversity, MIMO systems and CDMA schemes. However, the IB-DFE requires the system to have constant knowledge of the communication channel properties, that is, to have constantly perfect Channel State Information (CSI), which is both unrealistic and impractical to implement. In this dissertation we shall design an altered IB-DFE receiver that is able to properly detect signals from SC-FDMA based transmitters, even with constantly erroneous channel states. The results shall demonstrate that the proposed equalization scheme is robust to imperfect CSI (I-CSI) situations, since its performance is constantly close to the perfect CSI case, within just a few iterations.Redes sem fios têm crescido de maneira contínua e exponencial desde a sua incepção. A tremenda exigência para altas taxas de dados e o suporte para um elevado número de utilizadores sem aumentar a interferência disruptiva originada por estes são alguns dos focos que levaram ao desenvolvimento de técnicas de compensação e novas tecnologias. “Orthogonal frequency division multiplexing” (OFDM) é um dos exemplos de tecnologias que se destacaram nesta última década, visto ter fornecido uma plataforma para transmissão de dados sem-fio eficaz e simples. O seu maior problema é a alta “peak-to-average power ratio” (PAPR) e a sua sensibilidade a ruído de fase que deram motivo à adoção de técnicas alternativas, tais como os sistemas “single carrier” com “frequency domain equalization” (SC-FDE) ou os sistemas “multi-carrier” com “code division multiple access” (MC-CDMA), mas equalizadores não lineares no domínio de frequência têm sido alvo de especial atenção devido ao seu melhor desempenho. Destes, o “iterative block decision feedback equalizer” (IB-DFE) tem-se provado especialmente promissor devido à sua compatibilidade com técnicas de diversidade no espaço, sistemas MIMO e esquemas CDMA. No entanto, IB-DFE requer que o sistema tenha constante conhecimento das propriedades dos canais usados, ou seja, necessita de ter perfeito “channel state information” (CSI) constantemente, o que é tanto irrealista como impossível de implementar. Nesta dissertação iremos projetar um recetor IB-DFE alterado de forma a conseguir detetar sinais dum transmissor baseado em tecnologia SC-FDMA, mesmo com a informação de estado de canal errada. Os resultados irão então demonstrar que o novo esquema de equalização proposto é robusto para situações de CSI imperfeito (I-CSI), visto que o seu desempenho se mantém próximo dos valores esperados para CSI perfeito, em apenas algumas iterações.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore