14 research outputs found

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    QoS-aware and Policy Based Mobile Data O oading

    Get PDF

    Final Specification of Cooperative Functionalities

    Get PDF
    This deliverable presents the specification of the final version of the Cooperative AP Functionalities that have been designed in the context of Work Package (WP) 4 of the Wi-5 project. In detail, we present a general cooperative framework that includes functionalities for a Radio Resource Management (RRM) algorithm, which provides channel assignment and transmit power adjustment strategies, an AP selection policy, which also provides horizontal handover, and a Radio Access Technology (RAT) selection solution for vertical handover. The RRM algorithm achieves an important improvement for network performance in terms of several parameters through the channel assignment approach and the transmit power adjustment. The AP selection solution extends the approach presented in deliverables D4.1 and D4.2 and is based on a centralised potential game, which optimises the distribution of the so-called Fittingness Factor (FF) parameter among the Wi-Fi users. Such a parameter efficiently matches the suitability of the available spectrum resource to the usersā€™ application requirements. Moreover, the RAT selection solution extends the AP selection algorithm towards vertical handover functionality including 3G/4G networks. The assessment of the newest algorithms developed in the context of WP4 is illustrated in this deliverable through the analysis of several performance results in a simulated environment against other strategies found in the literature. Finally, the set of smart AP functionalities developed in the context of WP3, implemented on the Wi5 APs and on the Wi-5 controller, and their use in the proposed algorithms are illustrated. Specifically, this deliverable describes how these functionalities can enable the correct deployment of the proposed cooperative AP solutions in realistic scenarios. Therefore, the main novel contributions of this deliverable are i) the strengthening of the AP selection algorithm, ii) the design and assessment of a new algorithm for vertical handover and iii) the presentation of the finalised integration of the cooperative AP functionalities of the Wi-5 system

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:ā€¢ Robotsā€¢ Control and Intelligenceā€¢ Sensingā€¢ Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:ā€¢ Robotsā€¢ Control and Intelligenceā€¢ Sensingā€¢ Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Performance of Multi-antenna Wireless Systems with Channel Estimation Error

    Get PDF
    Wireless services and applications have become extremely popular and widely employed over the past decades. This, in turn, has led to a dramatic increase in the number of wireless users who demand reliable services with high data rates. But such services are very challenging to provide due to radio channel impairments including multipath fading and co-channel interference. In this regard, the use of multiple antennas in wireless systems was proposed recently which has rapidly received great attention. Multi-antenna technology is shown to have powerful capabilities to improve reliability via spatial diversity and to increase data rates via spatial multiplexing as compared with traditional single-antenna systems. Furthermore, by exploiting additional spatial dimensions, transmit beamforming techniques can be used to manage co-channel interference in such systems. In a rich scattering environment, multiple antennas that are located sufficiently far apart at a transmitter experience independent fading with high probability. Therefore, the transmitter can send redundant versions of the same data stream over these independent channels to improve reliability. In particular, if the transmitter has access to perfect channel state information (CSI), it can set the beamforming weights such that the received signals from different transmit antennas combine constructively at some intended receiver(s) and destructively at some unintended receiver(s) so that no co-channel interference is generated. Spatial multiplexing is another powerful multi-antenna transmission technique which aids in enhancing data rates without increasing bandwidth or transmit power. Multiple parallel and independent channels can be established between a transmitter and a receiver that both use multiple antennas in a rich scattering environment. Therefore, multiple independent streams of data can be simultaneously sent over these channels within the bandwidth of operation. This, in turn, enhances the data rate by a multiplicative factor equal to the number of the independent streams. Water-filling is a strategy that achieves the maximum data rate in such multiple-input multiple-output (MIMO) systems when perfect CSI is available at both the transmitter and the receiver. In practice, CSI can be obtained at the receiver by the use of training sequences and its accuracy can be increased by carefully selecting sequences with good auto-correlation properties. The transmitter can acquire CSI by using the channel reciprocity principle in wireless systems or by relying on a feedback path to convey the CSI from the receiver. Due to practical limitations such as rate-limited feedback links and the delay involved in such procedures, perfect CSI can be very challenging to obtain at the transmitter side. This motivates the need to evaluate the effect of imperfect CSI at the transmitter (CSIT) on the performance of transmit diversity and beamforming in multiple-input single-output (MISO) systems and water-filling power allocation in MIMO systems. In this thesis, transmit diversity and beamforming are studied in a MISO system with an n-antenna transmitter, an intended single-antenna receiver, and some unintended single- antenna receivers. Two scenarios are considered, namely, null-steering beamforming and Īµ-threshold beamforming in which the allowable interference threshold at the unintended receivers is zero and Īµ > 0, respectively. With perfect CSIT, null-steering beamforming can successfully nullify interference at m unintended receivers, where m < n, and achieve a nonzero received power at the intended receiver with a mean value that grows linearly with n āˆ’ m and is directly proportional to the power of the line-of-sight component between the transmitter and the intended receiver. With imperfect CSIT, null-steering beamforming based on erroneous channel estimates results in a nonzero interference at the unintended receivers with a mean value that is interestingly independent of n. Also, it is shown that a moderate line-of-sight component can significantly reduce the effect of estimation error on the performance of the intended link. Intuitively, the allowance of a small nonzero interference at the unintended receivers, as in Īµ-threshold beamforming, should improve the received power at the intended receiver. The analysis in this thesis shows that this enhancement is marginal and not worthwhile, notably in the case of imperfect CSIT. Therefore, there is no significant loss in the perfor- mance of the intended link if the transmitter performs null-steering beamforming instead. In fact, the transmitter can employ additional antennas to improve the performance of the intended link without generating significant extra interference on the unintended receivers. Furthermore, in this thesis, the effect of channel estimation error on the performance of water-filling power allocation in a MIMO system is explored when the transmitter and the receiver both have n antennas. At low signal to noise ratios (SNR), the gap be- tween water-filling throughput with perfect CSIT and the throughput corresponding to equal-power allocation with no CSIT is large asymptotically. It is thus interesting and worthwhile to evaluate how water-filling based on erroneous channel estimates may result in a throughput that falls between these two extremes. In this regard, it is first shown that, at low SNR, the normalized (by 1/n) water-filling throughput with imperfect CSIT converges to a non-random value denoted by R, almost surely as n increases. Denoting CP as the asymptotic normalized water-filling throughput with perfect CSIT and using it as a baseline for comparison, we then compare R with CP and find that for moderate channel estimation errors, water-filling can still achieve significant normalized throughputs that are close to CP. Furthermore, when the quality of channel estimation is very low, water-filling is shown asymptotically to achieve the same throughput as equal power allocation in the low SNR regime
    corecore