606 research outputs found

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Resource Allocation in 4G and 5G Networks: A Review

    Get PDF
    The advent of 4G and 5G broadband wireless networks brings several challenges with respect to resource allocation in the networks. In an interconnected network of wireless devices, users, and devices, all compete for scarce resources which further emphasizes the fair and efficient allocation of those resources for the proper functioning of the networks. The purpose of this study is to discover the different factors that are involved in resource allocation in 4G and 5G networks. The methodology used was an empirical study using qualitative techniques by performing literature reviews on the state of art in 4G and 5G networks, analyze their respective architectures and resource allocation mechanisms, discover parameters, criteria and provide recommendations. It was observed that resource allocation is primarily done with radio resource in 4G and 5G networks, owing to their wireless nature, and resource allocation is measured in terms of delay, fairness, packet loss ratio, spectral efficiency, and throughput. Minimal consideration is given to other resources along the end-to-end 4G and 5G network architectures. This paper defines more types of resources, such as electrical energy, processor cycles and memory space, along end-to-end architectures, whose allocation processes need to be emphasized owing to the inclusion of software defined networking and network function virtualization in 5G network architectures. Thus, more criteria, such as electrical energy usage, processor cycle, and memory to evaluate resource allocation have been proposed.  Finally, ten recommendations have been made to enhance resource allocation along the whole 5G network architecture

    An overview of 5G technologies

    Get PDF
    Since the development of 4G cellular networks is considered to have ended in 2011, the attention of the research community is now focused on innovations in wireless communications technology with the introduction of the fifth-generation (5G) technology. One cycle for each generation of cellular development is generally thought to be about 10 years; so the 5G networks are promising to be deployed around 2020. This chapter will provide an overview and major research directions for the 5G that have been or are being deployed, presenting new challenges as well as recent research results related to the 5G technologies. Through this chapter, readers will have a full picture of the technologies being deployed toward the 5G networks and vendors of hardware devices with various prototypes of the 5G wireless communications systems

    An overview of 5G technologies

    Get PDF
    Since the development of 4G cellular networks is considered to have ended in 2011, the attention of the research community is now focused on innovations in wireless communications technology with the introduction of the fifth-generation (5G) technology. One cycle for each generation of cellular development is generally thought to be about 10 years; so the 5G networks are promising to be deployed around 2020. This chapter will provide an overview and major research directions for the 5G that have been or are being deployed, presenting new challenges as well as recent research results related to the 5G technologies. Through this chapter, readers will have a full picture of the technologies being deployed toward the 5G networks and vendors of hardware devices with various prototypes of the 5G wireless communications systems
    • …
    corecore