309 research outputs found

    A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications

    Get PDF
    Citation: Niknam, S., Nasir, A. A., Mehrpouyan, H., & Natarajan, B. (2016). A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications. Ieee Access, 4, 5640-5648. doi:10.1109/access.2016.2604364Emerging fifth generation (5G) wireless networks require massive bandwidth in higher frequency bands, extreme network densities, and flexibility of supporting multiple wireless technologies in order to provide higher data rates and seamless coverage. It is expected that the utilization of the large bandwidth in the millimeter-wave (mmWave) band and deployment of heterogeneous networks (HetNets) will help address the data rate requirements of 5G networks. However, high pathloss and shadowing in the mmWave frequency band, strong interference in the HetNets due to massive network densification, and coordination of various air interfaces are challenges that must be addressed. In this paper, we consider a relay based multiband orthogonal frequency division multiple access HetNet in which mmWave small cells are deployed within the service area of macro cells. In particular, we attempt to exploit the distinct propagation characteristics of mmWave bands (i.e., 60 GHz-the V-band and 70-80 GHz the E-band) and the long term evolution band to maximize overall data rate of the network via efficient resource allocation. The problem is solved using a modified dual decomposition approach and then a low complexity greedy solution based on the iterative activity selection algorithm is presented. Simulation results show that the proposed approach outperforms conventional schemes

    Opportunities and Challenges in OFDMA-Based Cellular Relay Networks: A Radio Resource Management Perspective

    Full text link
    The opportunities and flexibility in relay networks and orthogonal frequency-division multiple access (OFDMA) make the combination a suitable candidate network and air-interface technology for providing reliable and ubiquitous high-data-r

    Joint relay selection and bandwidth allocation for cooperative relay network

    Get PDF
    Cooperative communication that exploits multiple relay links offers significant performance improvement in terms of coverage and capacity for mobile data subscribers in hierarchical cellular network. Since cooperative communication utilizes multiple relay links, complexity of the network is increased due to the needs for efficient resource allocation. Besides, usage of multiple relay links leads to Inter- Cell Interference (ICI). The main objective of this thesis is to develop efficient resource allocation scheme minimizes the effect of ICI in cooperative relay network. The work proposed a joint relay selection and bandwidth allocation in cooperative relay network that ensures high achievable data rate with high user satisfaction and low outage percentage. Two types of network models are considered: single cell network and multicell network. Joint Relay Selection and Bandwidth Allocation with Spatial Reuse (JReSBA_SR) and Optimized JReSBA_SR (O_JReSBA_SR) are developed for single cell network. JReSBA_SR considers link quality and user demand for resource allocation, and is equipped with spatial reuse to support higher network load. O_JReSBA_SR is an enhancement of JReSBA_SR with decision strategy based on Markov optimization. In multicell network, JReSBA with Interference Mitigation (JReSBA_IM) and Optimized JReSBA_IM (O_JReSBA_IM) are developed. JReSBA_IM deploys sectored-Fractional Frequency Reuse (sectored- FFR) partitioning concept in order to minimize the effect of ICI between adjacent cells. The performance is evaluated in terms of cell achievable rate, Outage Percentage (OP) and Satisfaction Index (SI). The result for single cell network shows that JReSBA_SR has notably improved the cell achievable rate by 35.0%, with reduced OP by 17.7% compared to non-joint scheme at the expense of slight increase in complexity at Relay Node (RN). O_JReSBA_SR has further improved the cell achievable rate by 13.9% while maintaining the outage performance with reduced complexity compared to JReSBA_SR due to the effect of optimization. The result for multicell network shows that JReSBA_IM enhances the cell achievable rate up to 65.1% and reduces OP by 35.0% as compared to benchmark scheme. Similarly, O_JReSBA_IM has significantly reduced the RN complexity of JReSBA_IM scheme, improved the cell achievable rate up to 9.3% and reduced OP by 1.3%. The proposed joint resource allocation has significantly enhanced the network performance through spatial frequency reuse, efficient, fair and optimized resource allocation. The proposed resource allocation is adaptable to variation of network load and can be used in any multihop cellular network such as Long Term Evolution-Advanced (LTE-A) network
    • …
    corecore