11,050 research outputs found

    Correlated Resource Models of Internet End Hosts

    Get PDF
    Understanding and modelling resources of Internet end hosts is essential for the design of desktop software and Internet-distributed applications. In this paper we develop a correlated resource model of Internet end hosts based on real trace data taken from the SETI@home project. This data covers a 5-year period with statistics for 2.7 million hosts. The resource model is based on statistical analysis of host computational power, memory, and storage as well as how these resources change over time and the correlations between them. We find that resources with few discrete values (core count, memory) are well modeled by exponential laws governing the change of relative resource quantities over time. Resources with a continuous range of values are well modeled with either correlated normal distributions (processor speed for integer operations and floating point operations) or log-normal distributions (available disk space). We validate and show the utility of the models by applying them to a resource allocation problem for Internet-distributed applications, and demonstrate their value over other models. We also make our trace data and tool for automatically generating realistic Internet end hosts publicly available

    Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems

    Get PDF
    The recent advances in cloud services technology are fueling a plethora of information technology innovation, including networking, storage, and computing. Today, various flavors have evolved of IoT, cloud computing, and so-called fog computing, a concept referring to capabilities of edge devices and users' clients to compute, store, and exchange data among each other and with the cloud. Although the rapid pace of this evolution was not easily foreseeable, today each piece of it facilitates and enables the deployment of what we commonly refer to as a smart scenario, including smart cities, smart transportation, and smart homes. As most current cloud, fog, and network services run simultaneously in each scenario, we observe that we are at the dawn of what may be the next big step in the cloud computing and networking evolution, whereby services might be executed at the network edge, both in parallel and in a coordinated fashion, as well as supported by the unstoppable technology evolution. As edge devices become richer in functionality and smarter, embedding capacities such as storage or processing, as well as new functionalities, such as decision making, data collection, forwarding, and sharing, a real need is emerging for coordinated management of fog-to-cloud (F2C) computing systems. This article introduces a layered F2C architecture, its benefits and strengths, as well as the arising open and research challenges, making the case for the real need for their coordinated management. Our architecture, the illustrative use case presented, and a comparative performance analysis, albeit conceptual, all clearly show the way forward toward a new IoT scenario with a set of existing and unforeseen services provided on highly distributed and dynamic compute, storage, and networking resources, bringing together heterogeneous and commodity edge devices, emerging fogs, as well as conventional clouds.Peer ReviewedPostprint (author's final draft

    Diluting the Scalability Boundaries: Exploring the Use of Disaggregated Architectures for High-Level Network Data Analysis

    Get PDF
    Traditional data centers are designed with a rigid architecture of fit-for-purpose servers that provision resources beyond the average workload in order to deal with occasional peaks of data. Heterogeneous data centers are pushing towards more cost-efficient architectures with better resource provisioning. In this paper we study the feasibility of using disaggregated architectures for intensive data applications, in contrast to the monolithic approach of server-oriented architectures. Particularly, we have tested a proactive network analysis system in which the workload demands are highly variable. In the context of the dReDBox disaggregated architecture, the results show that the overhead caused by using remote memory resources is significant, between 66\% and 80\%, but we have also observed that the memory usage is one order of magnitude higher for the stress case with respect to average workloads. Therefore, dimensioning memory for the worst case in conventional systems will result in a notable waste of resources. Finally, we found that, for the selected use case, parallelism is limited by memory. Therefore, using a disaggregated architecture will allow for increased parallelism, which, at the same time, will mitigate the overhead caused by remote memory.Comment: 8 pages, 6 figures, 2 tables, 32 references. Pre-print. The paper will be presented during the IEEE International Conference on High Performance Computing and Communications in Bangkok, Thailand. 18 - 20 December, 2017. To be published in the conference proceeding
    • …
    corecore