849 research outputs found

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    Privacy Management and Optimal Pricing in People-Centric Sensing

    Full text link
    With the emerging sensing technologies such as mobile crowdsensing and Internet of Things (IoT), people-centric data can be efficiently collected and used for analytics and optimization purposes. This data is typically required to develop and render people-centric services. In this paper, we address the privacy implication, optimal pricing, and bundling of people-centric services. We first define the inverse correlation between the service quality and privacy level from data analytics perspectives. We then present the profit maximization models of selling standalone, complementary, and substitute services. Specifically, the closed-form solutions of the optimal privacy level and subscription fee are derived to maximize the gross profit of service providers. For interrelated people-centric services, we show that cooperation by service bundling of complementary services is profitable compared to the separate sales but detrimental for substitutes. We also show that the market value of a service bundle is correlated with the degree of contingency between the interrelated services. Finally, we incorporate the profit sharing models from game theory for dividing the bundling profit among the cooperative service providers.Comment: 16 page

    Profit Maximization Auction and Data Management in Big Data Markets

    Full text link
    A big data service is any data-originated resource that is offered over the Internet. The performance of a big data service depends on the data bought from the data collectors. However, the problem of optimal pricing and data allocation in big data services is not well-studied. In this paper, we propose an auction-based big data market model. We first define the data cost and utility based on the impact of data size on the performance of big data analytics, e.g., machine learning algorithms. The big data services are considered as digital goods and uniquely characterized with "unlimited supply" compared to conventional goods which are limited. We therefore propose a Bayesian profit maximization auction which is truthful, rational, and computationally efficient. The optimal service price and data size are obtained by solving the profit maximization auction. Finally, experimental results on a real-world taxi trip dataset show that our big data market model and auction mechanism effectively solve the profit maximization problem of the service provider.Comment: 6 pages, 9 figures. This paper was accepted by IEEE WCNC conference in Dec. 201

    Incentive compatible route coordination of crowdsourced resources and its application to GeoPresence-as-a-Service

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen- ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent's exibility is exploited to maximize the coverage of a mo- bility field, with an objective to maximize the revenue collected from sat- isfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1 2 -approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent's truthfulness about its exibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    Distributed Time-Sensitive Task Selection in Mobile Crowdsensing

    Full text link
    With the rich set of embedded sensors installed in smartphones and the large number of mobile users, we witness the emergence of many innovative commercial mobile crowdsensing applications that combine the power of mobile technology with crowdsourcing to deliver time-sensitive and location-dependent information to their customers. Motivated by these real-world applications, we consider the task selection problem for heterogeneous users with different initial locations, movement costs, movement speeds, and reputation levels. Computing the social surplus maximization task allocation turns out to be an NP-hard problem. Hence we focus on the distributed case, and propose an asynchronous and distributed task selection (ADTS) algorithm to help the users plan their task selections on their own. We prove the convergence of the algorithm, and further characterize the computation time for users' updates in the algorithm. Simulation results suggest that the ADTS scheme achieves the highest Jain's fairness index and coverage comparing with several benchmark algorithms, while yielding similar user payoff to a greedy centralized benchmark. Finally, we illustrate how mobile users coordinate under the ADTS scheme based on some practical movement time data derived from Google Maps
    • …
    corecore