53 research outputs found

    Trends of biosensing: plasmonics through miniaturization and quantum sensing

    Full text link
    Despite being extremely old concepts, plasmonics and surface plasmon resonance-based biosensors have been increasingly popular in the recent two decades due to the growing interest in nanooptics and are now of relevant significance in regards to applications associated with human health. Plasmonics integration into point-of-care devices for health surveillance has enabled significant levels of sensitivity and limit of detection to be achieved and has encouraged the expansion of the fields of study and market niches devoted to the creation of quick and incredibly sensitive label-free detection. The trend reflects in wearable plasmonic sensor development as well as point-of-care applications for widespread applications, demonstrating the potential impact of the new generation of plasmonic biosensors on human well-being through the concepts of personalized medicine and global health. In this context, the aim here is to discuss the potential, limitations, and opportunities for improvement that have arisen as a result of the integration of plasmonics into microsystems and lab-on-chip over the past five years. Recent applications of plasmonic biosensors in microsystems and sensor performance are analyzed. The final analysis focuses on the integration of microfluidics and lab-on-a-chip with quantum plasmonics technology prospecting it as a promising solution for chemical and biological sensing. Here it is underlined how the research in the field of quantum plasmonic sensing for biological applications has flourished over the past decade with the aim to overcome the limits given by quantum fluctuations and noise. The significant advances in nanophotonics, plasmonics and microsystems used to create increasingly effective biosensors would continue to benefit this field if harnessed properly

    Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity

    Get PDF
    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes

    Nanoplasmonic Approaches for Sensitive Detection and Molecular Characterization of Extracellular Vesicles

    Get PDF
    All cells release a multitude of nanoscale extracellular vesicles (nEVs) into circulation, offering immense potential for new diagnostic strategies. Yet, clinical translation for nEVs remains a challenge due to their vast heterogeneity, our insufficient ability to isolate subpopulations, and the low frequency of disease-associated nEVs in biofluids. The growing field of nanoplasmonics is poised to address many of these challenges. Innovative materials engineering approaches based on exploiting nanoplasmonic phenomena, i.e., the unique interaction of light with nanoscale metallic materials, can achieve unrivaled sensitivity, offering real-time analysis and new modes of medical and biological imaging. We begin with an introduction into the basic structure and function of nEVs before critically reviewing recent studies utilizing nanoplasmonic platforms to detect and characterize nEVs. For the major techniques considered, surface plasmon resonance (SPR), localized SPR, and surface enhanced Raman spectroscopy (SERS), we introduce and summarize the background theory before reviewing the studies applied to nEVs. Along the way, we consider notable aspects, limitations, and considerations needed to apply plasmonic technologies to nEV detection and analysis

    Label-Free MicroRNA Optical Biosensors

    Get PDF
    MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection of miRNA. The optical approach for a label-free miRNA sensor is very promising and many assays have demonstrated ultra-sensitivity (aM) with a fast response time. Here, we review the most relevant label-free microRNA optical biosensors and the nanomaterials used to enhance the performance of the optical biosensor

    Colorimetric nanodiagnostics for Point-Of-Care applications: detection of salivary biomarkers and environmental contaminants

    Get PDF
    Nanomaterials offer many unique opportunities for the development of effective and rapid point-of-care (POC) devices to be exploited in many fields, including early diagnosis, health monitoring, and pollutant detection. In particular, gold nanoparticles (AuNPs) exhibit tunable catalytic and plasmonic properties, which are key enabling tools to design and develop innovative detection schemes in several sensing applications. The aim of this PhD project was the development of AuNPs-based colorimetric POCs to detect heavy metal ion contaminations and specific biomarkers in non-invasive biological fluids. First, we developed a novel strategy that exploits the combination of the plasmonic and catalytic properties of AuNPs to achieve an ultrafast (1 min) and sensitive colorimetric sensor for highly toxic methyl mercury. Taking advantage of the AuNP nanocatalyst to promote the rapid reduction of methyl mercury with nucleation on the particle surface and consequent aggregation-induced plasmonic shift, we were able to detect by naked-eye mercury contaminations as low as 20 ppb, which is relevant for food contaminations or biological fluid assessment. Moreover, an innovative and versatile platform, based on multibranched AuNPs, was developed for the detection of salivary biomarkers. Coupling etching and growing reactions in a reshaping process onto the nanostars surface, we created a customizable platform with boosted color change readout for fast detection of salivary glucose at low concentrations. The nanosensor performance was validated on samples from patients with diabetes, proving its potential as a novel non-invasive tool for frequent monitoring of glycaemia. As side project we also investigated the platinum nanoparticles enzymatic activity in a colorimetric sensor for inorganic mercury contamination monitoring in water sources

    Plasmon-exciton coupling for signal amplification and biosensing : fundamentals and application

    Get PDF
    Surface plasmon resonance (SPR) is the collective oscillation of frequency-matched free-space photons and surface electrons at a metal/dielectric interface. Their inherent sensitivity to refractive index changes and ability to couple with exciton species and enhance light-matter interaction make them ideal candidates for low-concentration analyte detection compared to conventional biosensors. The use of metal nanostructures and nanomaterials to excite SPR represents the current state-of-the-art. However, the challenges associated with repeatable synthesis of uniform nanomaterials, complex nanostructure fabrication, low SPR generation efficiency and limited understanding of the mechanism of plasmon-exciton coupling for signal amplification have motivated the search for alternative architectures and procedures. The uniform and repeatable gold nanoslit (NS) and nanoledge (NL) array architectures offers a promising route towards addressing the above issues, and hence this research attempts to take advantage of these platforms to achieve efficient SPR generation and exciton coupling for biosensing applications. The overarching scope of this dissertation extends to the design, fabrication, and optimization of metal NS and NL structures for SPR generation and sensing applications. Emphasis is placed on investigating the mechanism of optical signal enhancement arising from plasmon-exciton coupling (PEC) with particular focus on (a) exploring the role of geometry and size of the nanostructures (b) examining the influence of SPR spectral mode overlap with exciton’s absorption and/or emission energies on the overall optical signal in a NS or NL system, and (c) investigating the analytical sensitivity and signal transduction of the PEC system to biomolecular interactions. The nanoimprinting technique based on soft lithography for NS fabrication, which is used in this work for NS array fabrication, required addressing a critical issue, namely PDMS diffusion into nanoscale patterns for high aspect ratio realization. This was mitigated by curing temperature variation and incubation time to achieve 50 nm-130 nm width NS arrays with an intense, broad spectral response that red-shifts and diminishes with increasing NS width. The 50 nm width structure exhibited ~57× optical enhancement when coupled with acridine orange, a fluorescence dye, whose absorption and emission spectra closely overlaps with plasmonic spectra. A sensitive assay for detecting DNA hybridization was generated using the interaction of the selected SARS-CoV-2 ssDNA and dsDNA with AO to trigger the metachromatic behaviour of the dye to produce a strong optical signal amplification on the formation of AO-ssDNA complex and a quenched signal upon hybridization to the complementary target DNA along with a blue shift in the fluorescence of AO-dsDNA. The SARS-CoV-2 DNA hybridization assay, based on the PEC exhibited 0.21 nM sensitivity to complementary strand target, distinguished 1-, 2-, and 3-base mismatched DNA targets, reusability of ~6 x with 96% signal recovery, stable for up to 10 days at room temperature. Regarding the NL sensing platform, the principle of the sensing mechanism is based on plasmon-mediated extraordinary optical transmission (EOT) whose wavelength red-shifts with increase in refractive index (RI) at near-metal surface. The NL plasmonic-based biosensor fabricated using a patented E-beam writing method exhibited ~ 384.08 nm/RIU sensitivity, limit of detection to cardiac troponin I (TnI) at 0.079 ng/mL, 0.084 ng/mL and 0.097 ng/mL in PBS buffer, human serum, and human blood, respectively. The direct measurement of TnI in whole human blood without any purification or sample preparation step highlights the significance of the sensing platform for point-of-care detection. Thus, this work innovates (a) a tunable SPR to meet the requirement for plasmon-exciton spectral overlap for optical signal amplification, (b) the mechanism of optical enhancements due to PEC in NS arrays, and (c) a new application of PEC in NS and EOT in NL for the sensitive detection of SARS-CoV-2 DNA hybridization and cardiovascular biomarker TnI in human blood, respectively. The enhanced light-matter interactions have a broader impact beyond healthcare to light harvesting for solar cells, heat generation for cancer therapy, and photocatalysis for nanoscale reactions like water splitting

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013–2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundationsponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoDsponsoredgrantforMultiScaleMultiDisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIHsponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPAfundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBackSideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundation–sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Center—the centerpiece of our translational biophotonics program—continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    Nanostructured biosensors with DNA-based receptors for real-time detection of small analytes

    Get PDF
    In zahlreichen lebenswichtigen Bereichen haben sich Biosensoren als unverzichtbare Messgeräte erwiesen. Der Nachweis von spezifischen Molekülen im Körper für eine frühzeitige Krankheitserkennung erfordert empfindliche und zugleich zuverlässige Messmethoden. Ein rasantes Fortschreiten im Bereich der Nanotechnologie führt dabei zur Entwicklung von Materialien mit neuen Eigenschaften, und damit verbunden, auch zu innovativen Anwendungsmöglichkeiten im Bereich der Biosensorik. Das Zusammenspiel von Nanotechnologie und Sensortechnik gewährleistet die Konstruktion von Sensoren mit empfindlicheren Nachweisgrenzen und kürzeren Reaktionszeiten. Die Option zur Integration und Miniaturisierung stellen daher einen erfolgreichen Einsatz in direkter Patientennähe in Aussicht, sodass Nanobiosensoren die Brücke zwischen Laborddiagnostik und Standardanwendungen schließen können. Die folgende Arbeit widmet sich der Anwendung von nanostrukturierten Biosensoren für einen empfindlichen und markierungsfreien Nachweis von Zielmolekülen. Ein Hauptaugenmerk liegt dabei auf der kontinuierlichen Messung von Biomarkern mit kompakten Auslesesystemen, die eine direkte Signalmeldung und somit eine Detektion in Echtzeit ermöglichen. Dies erfordert zunächst die sorgfältige Funktionalisierung von Sensoroberflächen mit geeigneten DNA-basierten Rezeptoren. Infolgedessen werden beispielhaft verschiedene Sensorsysteme, Analyten und Charakterisierungsmethoden vorgestellt sowie universelle Strategien für die erfolgreiche Konfiguration von Nanobiosensorplattformen präsentiert. Das erste Anwendungsbeispiel widmet sich einem plasmonischen Biosensor, bei dem vertikal ausgerichtete Gold-Nanoantennen Signale mittels sog. lokalisierter Oberflächenplasmonenresonanz (LSPR) erzeugen. Mit dem Sensor konnte erfolgreich die Immobilisierung, das nachträgliche Blocken sowie die anschließende Hybridisierung von DNA nachgewiesen werden. Mithilfe des LSPR-Sensors wurden gleichzeitig grundlegende Hybridisierungsmechanismen auf nanostrukturierten und planaren Oberflächen verglichen und damit verbunden die einzigartigen optischen Eigenschaften metallischer Nanostrukturen betont. In einem zweiten Anwendungsbeispiel misst ein elektrischer Biosensor kontinuierlich die Konzentration des Stressmarkers Cortisol im menschlichen Speichel. Der direkte, markierungsfreie Nachweis von Cortisol mit Silizium-Nanodraht basierten Feldeffekttransistoren (SiNW FET) wurde anhand zugrunde liegender Ladungsverteilungen innerhalb des entstandenen Rezeptor-Analyte-Komplexes bewertet, sodass ein Nachweis des Analyten innerhalb der sog. Debye-Länge ermöglicht wird. Die erfolgreiche Strategie zur Oberflächenfunktionalisierung im Zusammenspiel mit dem Einsatz von SiNW FETs auf einem tragbaren Messgerät wurde anhand des Cortisolnachweises im Speichel belegt. Ein übereinstimmender Vergleich der gemessenen Corisolkonzentrationen mit Werten, die mit einer kommerziellen Alternative ermittelt wurden, verdeutlichen das Potential der entwickelten Plattform. Zusammenfassend veranschaulichen beide vorgestellten Nanobiosensor-Plattformen die vielseitige und vorteilhafte Leistungsfähigkeit der Systeme für einen kontinuierlichen Nachweis von Biomarkern in Echtzeit und vorzugsweise in Patientennähe.:Kurzfassung I Abstract III Abbreviations and symbols V Content VII 1 Introduction 1 1.1 Scope of the thesis 4 1.2 References 6 2 Fundamentals 9 2.1 Biosensors 9 2.2 Influence of nanotechnology on sensor development 10 2.3 Biorecognition elements 12 2.3.1 Biorecognition element: DNA 13 2.3.2 Aptamers 14 2.3.3 Immobilization of receptors 15 2.4 Transducer systems 17 2.4.1 Optical biosensors - surface plasmon resonance 17 2.4.2 Electric Biosensors – Field-effect transistors (FETs) 21 2.5 Metal oxide semiconductor field-effect transistor - MOSFET 21 2.6 Summary 26 2.7 References 27 3 Materials and methods 33 3.1 Plasmonic biosensors based on vertically aligned gold nanoantennas 33 3.1.1 Materials 33 3.1.2 Manufacturing of nanoantenna arrays 34 3.1.3 Surface modification and characterization 35 3.1.4 Measurement setup for detection of analytes 38 3.2 SiNW FET-based real-time monitoring of cortisol 40 3.2.1 Materials 40 3.2.2 Manufacturing of silicon nanowire field effect transistors (SiNW FETs) 42 3.2.3 Integration of SiNW FETs into a portable platform 42 3.2.4 Biomodification and characterization of electronic biosensors SiNW FETs 42 3.2.5 Electric characterization of FETs 47 3.3 References 50 4 Plasmonic DNA biosensor based on vertical arrays of gold nanoantennas 51 4.1 Introduction - Optical biosensors operating by means of LSPR 53 4.2 Biosensing with vertically aligned gold nanoantennas 56 4.2.1 Sensor fabrication, characterization, and integration 56 4.2.2 Integration of microfluidics 58 4.2.3 Immobilization of probe DNA and backfilling 58 4.2.4 Hybridization of complementary DNA strands 62 4.2.5 Surface coverage and hybridization efficiency of DNA 69 4.2.6 Refractive index sensing 72 4.2.7 Backfilling and blocking 73 4.3 Summary 75 4.4 References 77 5 Label-free detection of salivary cortisol with SiNW FETs 83 5.1 Introduction 85 5.2 Design, integration, and performance of SiNW FETs into a portable platform 89 5.2.1 Structure and electrical characteristics of honeycomb SiNW FETs 89 5.2.2 Integration of SiNW FET into a portable measuring unit 91 5.2.3 Performance of SiNW FET arrays 93 5.3 Detection of biomolecules with SiNW FETs 102 5.3.1 General considerations for biodetection with FETs 102 5.3.2 Sensing aptamers with FETs 103 5.3.3 Biodetection of the analyte cortisol with SiNW FETs 104 5.3.4 Detection of cortisol with SiNW FETs 112 5.4 Summary 119 5.5 References 121 6 Summary and outlook 131 6.1 Summary 131 6.2 Perspectives – toward multiplexed biosensing applications 134 6.3 References 137 Appendix i A.1 Protocols i A.1.1 Functionalization of gold antennas with thiolated DNA i A.1.2 Functionalization of SiO2 with TESPSA and amino-modified receptors i A.1.3 Functionalization with APTES and carboxyl-modified receptors ii A.1.4 Preparation of microfluidic channels via soft lithography ii A.2 Predicted secondary structures iv A.2.1 Secondary structures of 100base pair target without probe-strands iv A.2.2 Secondary structures of 100base pair target with 25 base pair probe-strand x Versicherung xvii Acknowledgments xix List of publications xxi Peer-reviewed publications xxi Publications in preparation xxi Selected international conferences xxii Curriculum Vitae xxiiiBiosensors have proven to be indispensable in numerous vital areas. For example, detecting the presence and concentration of specific biomarkers requires sensitive and reliable measurement methods. Rapid developments in the field of nanotechnology lead to nanomaterials with new properties and associated innovative applications. Thus, nanotechnology has a far-reaching impact on biosensors' development, e.g., delivery of biosensing devices with greater sensitivity, shorter response times, and precise but cost-effective sensor platforms. In addition, nanobiosensors hold high potential for integration and miniaturization and can operate directly at the point of care - serving as a bridge between diagnostics and routine tests. This work focuses on applying nanostructured biosensors for the sensitive and label-free detection of analytes. A distinct aim is the continuous monitoring of biomarkers with compact read-out systems to provide direct, valuable feedback in real-time. The first step in achieving this goal is the adequate functionalization of nanostructured sensor surfaces with suitable receptors to detect analytes of interest. Due to their thermal and chemical stability with the possibility for customizable functionalization, DNA-based receptors are selected. Thereupon, universal strategies for confining nanobiosensor platforms are presented using different sensor systems, analytes, and characterization methods. As a first application, a plasmonic biosensor based on vertically aligned gold nanoantennas tracked the immobilization, blocking, and subsequent hybridization of DNA by means of localized surface plasmon resonance (LSPR). At the same time, the LSPR sensor was used to evaluate fundamental hybridization mechanisms on nanostructured and planar surfaces, emphasizing the unique optical properties of metallic nanostructures. In a second application, an electric sensor based on silicon nanowire field-effect transistors (SiNW FET) monitored the level of the stress marker cortisol in human saliva. Based on evaluating the underlying charge distributions within the resulting receptor-analyte complex of molecules, the detection of cortisol within the Debye length is facilitated. Thus, direct, label-free detection of cortisol in human saliva using SiNW FET was successfully applied to the developed platform and compared to cortisol levels obtained using a commercial alternative. In summary, both presented platforms indicate a highly versatile and beneficial performance of nanobiosensors for continuous detection of biomarkers in real-time and preferably point-of-care (POC).:Kurzfassung I Abstract III Abbreviations and symbols V Content VII 1 Introduction 1 1.1 Scope of the thesis 4 1.2 References 6 2 Fundamentals 9 2.1 Biosensors 9 2.2 Influence of nanotechnology on sensor development 10 2.3 Biorecognition elements 12 2.3.1 Biorecognition element: DNA 13 2.3.2 Aptamers 14 2.3.3 Immobilization of receptors 15 2.4 Transducer systems 17 2.4.1 Optical biosensors - surface plasmon resonance 17 2.4.2 Electric Biosensors – Field-effect transistors (FETs) 21 2.5 Metal oxide semiconductor field-effect transistor - MOSFET 21 2.6 Summary 26 2.7 References 27 3 Materials and methods 33 3.1 Plasmonic biosensors based on vertically aligned gold nanoantennas 33 3.1.1 Materials 33 3.1.2 Manufacturing of nanoantenna arrays 34 3.1.3 Surface modification and characterization 35 3.1.4 Measurement setup for detection of analytes 38 3.2 SiNW FET-based real-time monitoring of cortisol 40 3.2.1 Materials 40 3.2.2 Manufacturing of silicon nanowire field effect transistors (SiNW FETs) 42 3.2.3 Integration of SiNW FETs into a portable platform 42 3.2.4 Biomodification and characterization of electronic biosensors SiNW FETs 42 3.2.5 Electric characterization of FETs 47 3.3 References 50 4 Plasmonic DNA biosensor based on vertical arrays of gold nanoantennas 51 4.1 Introduction - Optical biosensors operating by means of LSPR 53 4.2 Biosensing with vertically aligned gold nanoantennas 56 4.2.1 Sensor fabrication, characterization, and integration 56 4.2.2 Integration of microfluidics 58 4.2.3 Immobilization of probe DNA and backfilling 58 4.2.4 Hybridization of complementary DNA strands 62 4.2.5 Surface coverage and hybridization efficiency of DNA 69 4.2.6 Refractive index sensing 72 4.2.7 Backfilling and blocking 73 4.3 Summary 75 4.4 References 77 5 Label-free detection of salivary cortisol with SiNW FETs 83 5.1 Introduction 85 5.2 Design, integration, and performance of SiNW FETs into a portable platform 89 5.2.1 Structure and electrical characteristics of honeycomb SiNW FETs 89 5.2.2 Integration of SiNW FET into a portable measuring unit 91 5.2.3 Performance of SiNW FET arrays 93 5.3 Detection of biomolecules with SiNW FETs 102 5.3.1 General considerations for biodetection with FETs 102 5.3.2 Sensing aptamers with FETs 103 5.3.3 Biodetection of the analyte cortisol with SiNW FETs 104 5.3.4 Detection of cortisol with SiNW FETs 112 5.4 Summary 119 5.5 References 121 6 Summary and outlook 131 6.1 Summary 131 6.2 Perspectives – toward multiplexed biosensing applications 134 6.3 References 137 Appendix i A.1 Protocols i A.1.1 Functionalization of gold antennas with thiolated DNA i A.1.2 Functionalization of SiO2 with TESPSA and amino-modified receptors i A.1.3 Functionalization with APTES and carboxyl-modified receptors ii A.1.4 Preparation of microfluidic channels via soft lithography ii A.2 Predicted secondary structures iv A.2.1 Secondary structures of 100base pair target without probe-strands iv A.2.2 Secondary structures of 100base pair target with 25 base pair probe-strand x Versicherung xvii Acknowledgments xix List of publications xxi Peer-reviewed publications xxi Publications in preparation xxi Selected international conferences xxii Curriculum Vitae xxii

    Light and colour effects on gold nanoparticles

    Get PDF
    A literature review has been made for this final degree project about gold nanoparticles (AuNPs). They are first introduced by describing the metallic nanoparticles, and then the different properties and characteristics that make AuNPs unique thanks to their nanometer-size, studying deeply the “Surface Plasmon Resonance”. On the other hand, it has also been considered important to study their synthesis and their different applications, especially in the biomedical field. Special emphasis has been placed on the use of these nanoparticles as colorimetric reagents and the effects of light on AuNPs in radiotherapy, explained in the “results and discussion” section. To conclude are cited new advances that have been studied nowadays, among which the use of AuNPs in tests for Covid-19 stands out.Universidad de Sevilla. Grado en Farmaci

    Nanoplasmonic efficacy of gold triangular nanoprisms in measurement science: applications ranging from biomedical to forensic sciences

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Noble metal nanostructures display collective oscillation of the surface conduction electrons upon light irradiation as a form of localized surface plasmon resonance (LSPR) properties. Size, shape, and refractive index of the surrounding environment are the key features that control the LSPR properties. Surface passivating ligands on to the nanostructure can modify the charge density of nanostructures. Further, allow resonant wavelengths to match that of the incident light. This unique phenomenon called the “plasmoelectric effect.” According to the Drude model, red and blue shifts of LSPR peak of nanostructures are observed in the event of reducing and increasing charge density, respectively. However, herein, we report unusual LSPR properties of gold triangular nanoprisms (Au TNPs) upon functionalization with para-substituted thiophenols (X-Ph-SH, X = -NH2, -OCH3, -CH3, -H, -Cl, -CF3, and -NO2). Accordingly, we hypothesized that an appropriate energy level alignment between the Au Fermi energy and the HOMO or LUMO of ligands allows the delocalization of surface plasmon excitation at the hybrid inorganic-organic interface. Thus, provides a thermodynamically driven plasmoelectric effect. We further validated our hypothesis by calculating the HOMO and LUMO levels and work function changes of Au TNPs upon functionalization with para-substituted thiol. This reported unique finding then utilized to design ultrasensitive plasmonic substrate for biosensing of cancer microRNA in bladder cancer and cardiovascular diseases. In the discovery of early bladder cancer diagnosis platform, for the first time, we have been utilized to analyze the tumor suppressor microRNA for a more accurate diagnosis of BC. Additionally, we have been advancing our sensing platform to mitigate the false positive and negative responses of the sensing platform using surface-enhanced fluorescence technique. This noninvasive, highly sensitive, highly specific, also does not have false positives techniques that provide the strong key to detect cancer at a very early stage, hence increase the cancer survival rate. Moreover, the electromagnetic field enhancement of Surface-Enhanced Raman Scattering (SERS) and other related surface-enhanced spectroscopic processes resulted from the LSPR property. This dissertation describes the design and development of entirely new SERS nanosensors using a flexible SERS substrate based on the unique LSPR property of Au TNPs. The developed sensor shows an excellent SERS activity (enhancement factor = ~6.0 x 106) and limit of detection (as low as 56 parts-per-quadrillions) with high selectivity by chemometric analyses among three commonly used explosives (TNT, RDX, and PETN). Further, we achieved the programmable self-assembly of Au TNPs using molecular tailoring to form a 3D supper lattice array based on the substrate effect. Here we achieved the highest reported sensitivity for potent drug analysis, including opioids and synthetic cannabinoids from human plasma obtained from the emergency room. This exquisite sensitivity is mainly due to the two reasons, including molecular resonance of the adsorbate molecules and the plasmonic coupling among the nanoparticles. Altogether we are highly optimistic that our research will not only increase the patient survival rate through early detection of cancer but also help to battle the “war against drugs” that together are expected to enhance the quality of human life
    corecore