96 research outputs found

    Dynamics of nearly inviscid Faraday waves in almost circular containers

    Get PDF
    Parametrically driven surface gravity-capillary waves in an elliptically distorted circular cylinder are studied. In the nearly inviscid regime, the waves couple to a streaming flow driven in oscillatory viscous boundary layers. In a cylindrical container, the streaming flow couples to the spatial phase of the waves, but in a distorted cylinder, it couples to their amplitudes as well. This coupling may destabilize pure standing oscillations, and lead to complex time-dependent dynamics at onset. Among the new dynamical behavior that results are relaxation oscillations involving abrupt transitions between standing and quasiperiodic oscillations, and exhibiting ‘canards’

    Lyapunov-Schmidt Reduction for Unfolding Heteroclinic Networks of Equilibria and Periodic Orbits with Tangencies

    Get PDF
    This article concerns arbitrary finite heteroclinic networks in any phase space dimension whose vertices can be a random mixture of equilibria and periodic orbits. In addition, tangencies in the intersection of un/stable manifolds are allowed. The main result is a reduction to algebraic equations of the problem to find all solutions that are close to the heteroclinic network for all time, and their parameter values. A leading order expansion is given in terms of the time spent near vertices and, if applicable, the location on the non-trivial tangent directions. The only difference between a periodic orbit and an equilibrium is that the time parameter is discrete for a periodic orbit. The essential assumptions are hyperbolicity of the vertices and transversality of parameters. Using the result, conjugacy to shift dynamics for a generic homoclinic orbit to a periodic orbit is proven. Finally, equilibrium-to-periodic orbit heteroclinic cycles of various types are considered

    Parallel transport along Seifert manifolds and fractional monodromy

    Get PDF
    The notion of fractional monodromy was introduced by Nekhoroshev, Sadovski\'{i} and Zhilinski\'{i} as a generalization of standard (`integer') monodromy in the sense of Duistermaat from torus bundles to singular torus fibrations. In the present paper we prove a general result that allows to compute fractional monodromy in various integrable Hamiltonian systems. In particular, we show that the non-triviality of fractional monodromy in 2 degrees of freedom systems with a Hamiltonian circle action is related only to the fixed points of the circle action. Our approach is based on the study of a specific notion of parallel transport along Seifert manifolds
    • …
    corecore