1,201 research outputs found

    Phononic bath engineering of a superconducting qubit

    Full text link
    Phonons, the ubiquitous quanta of vibrational energy, play a vital role in the performance of many quantum technologies. Coupling to well-defined phonon modes allows for highly-connected multi-qubit gates in ion trap architectures as well as the generation of entangled states in systems of superconducting qubits. Even when the phonons take the form of a large dissipative bath, an irreversible flow of heat allows for state initialization critical to the function of laser systems and the operation of optically active spin qubits. Conversely, unintended coupling to phonons has been shown to degrade qubit performance by generating decohering quasiparticles and leading to correlated errors in superconducting qubit systems. Regardless of whether a phononic bath plays an enabling or deleterious role, it is typically intrinsic to the system and does not admit specific control over its spectral properties, nor the possibility of engineering aspects of its dissipation to be used as a resource. Here we show that by precisely designing and controlling the coupling of a superconducting qubit to phononic degrees of freedom allows a new type of quantum control over superconducting circuits. By shaping the loss spectrum of the qubit via its coupling to a bath of lossy piezoelectric surface acoustic wave phonons, we are able to prepare and stabilize arbitrary qubit states. Additionally, we find that the presence of the energy-dependent loss imparted onto the qubit by the phonons is well-described by a master equation treatment of the composite system, with excellent agreement in both the qubit dynamics as well as its steady state. Our results demonstrate the ability of engineered phononic dissipation to achieve highly efficient qubit control.Comment: 18 pages, 5 figures, 1 table, main text and S

    Strong dispersive coupling between a mechanical resonator and a fluxonium superconducting qubit

    Full text link
    We demonstrate strong dispersive coupling between a fluxonium superconducting qubit and a 690 megahertz mechanical oscillator, extending the reach of circuit quantum acousto-dynamics (cQAD) experiments into a new range of frequencies. We have engineered a qubit-phonon coupling rate of g≈2π×14 MHzg\approx2\pi\times14~\text{MHz}, and achieved a dispersive interaction that exceeds the decoherence rates of both systems while the qubit and mechanics are highly nonresonant (Δ/g≳10\Delta/g\gtrsim10). Leveraging this strong coupling, we perform phonon number-resolved measurements of the mechanical resonator and investigate its dissipation and dephasing properties. Our results demonstrate the potential for fluxonium-based hybrid quantum systems, and a path for developing new quantum sensing and information processing schemes with phonons at frequencies below 700 MHz to significantly expand the toolbox of cQAD.Comment: 22 pages, 12 figure

    Integrated Readout at the Quantum-Classical Interface of Semiconductor Qubits

    Get PDF
    Quantum computing promises to deliver uniquely powerful information processing machines by exploiting the quantum phenomena of superposition and entanglement. In solid-state systems, there has been significant progress in the isolation and control of the fundamental units needed to build such machines, known as qubits. However, scaling-up the number of qubits to the point where sophisticated algorithms can be performed presents considerable experimental challenges. In particular, it is becoming increasingly apparent that a new class of tools will be required to interface between fragile quantum systems, and the classical readout and control hardware of the outside world. This thesis presents experimental investigations towards the development of a scalable readout architecture for semiconductor qubit platforms. Fast readout of a GaAs-AlGaAs double quantum dot in the few-electron regime is first demonstrated via an embedded dispersive gate sensor (DGS), alleviating the burden of requiring separate charge sensors for every qubit. The sensitivity and bandwidth of this technique are extracted and benchmarked against well-established readout methods. Dispersive gate sensing of quantum point contacts (QPCs) is then presented, probing charge rearrangement within the local electrostatic environment of quasi one-dimensional channels. A low-loss, lumped-element, LC resonant circuit is also implemented for frequency multiplexed readout. The second set of experiments concern the design and characterisation of miniaturised, on-chip circulators based on the quantum Hall effect, and the quantum anomalous Hall effect. Microwaves are first capacitively coupled into edge magnetoplasmon modes in a mesoscopic GaAs-AlGaAs droplet. Non-reciprocal forward transmission comparable to off-the-shelf components is observed, which is accounted for within an interferometric picture. This circulator design is then extended to thin films of the three-dimensional topological insulator, Cr-doped (Bi,Sb)2Te3, wherein similar non-reciprocity is demonstrated in the absence of an external magnetic field

    High Frequency Thermally Actuated Single Crystalline Silicon Micromechanical Resonators with Piezoresistive Readout

    Get PDF
    Over the past decades there has been a great deal of research on developing high frequency micromechanical resonators. As the two most common and conventional MEMS resonators, piezoelectric and electrostatic resonators have been at the center of attention despite having some drawbacks. Piezoelectric resonators provide low impedances that make them compatible with other low impedance electronic components, however they have low quality factors and complicated fabrication processes. In case of electrostatic resonators, they have higher quality factors but the need for smaller transductions gaps complicates their fabrication process and causes squeezed film damping in Air. In addition, the operation of both these resonators deteriorates at higher frequencies. In this presented research, thermally actuated resonators with piezoresistive readout have been developed. It has been shown that not only do such resonators require a simple fabrication process, but also their performance improves at higher frequencies by scaling down all the dimensions of the structure. In addition, due to the internal thermo-electro-mechanical interactions, these active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-Q-enhancement and self-sustained-oscillation without the need for any electronic circuitry. In this research these facts have been shown both experimentally and theoretically. In addition, in order to further simplify the fabrication process of such structures, a new controlled batch fabrication method for fabricating silicon nanowires has been developed. This unique fabrication process has been utilized to fabricate high frequency, low power thermal-piezoresistive resonators. Finally, a new thermal-piezoresistive resonant structure has been developed that can operate inside liquid. This resonant structure can be utilized as an ultra sensitive biomedical mass sensor

    Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields

    Full text link
    Efficient scaling and flexible control are key aspects of useful quantum computing hardware. Spins in semiconductors combine quantum information processing with electrons, holes or nuclei, control with electric or magnetic fields, and scalable coupling via exchange or dipole interaction. However, accessing large Hilbert space dimensions has remained challenging, due to the short-distance nature of the interactions. Here, we present an atom-based semiconductor platform where a 16-dimensional Hilbert space is built by the combined electron-nuclear states of a single antimony donor in silicon. We demonstrate the ability to navigate this large Hilbert space using both electric and magnetic fields, with gate fidelity exceeding 99.8% on the nuclear spin, and unveil fine details of the system Hamiltonian and its susceptibility to control and noise fields. These results establish high-spin donors as a rich platform for practical quantum information and to explore quantum foundations.Comment: 31 pages and 19 figures including Supplementary Material

    Zinc Oxide-on-Silicon Surface Acoustic Wave Devices

    Get PDF
    A monolithic ZnO-on-silicon surface acoustic wave (SAW) memory correlator has been fabricated which utilizes induced junctions separated by ion implanted regions to store a reference signal. The performance characteristics of this device have been investigated including storage time, dynamic range, and degenerate convolution efficiency. Verification of the existence of charge storage regions is possible prior to completed device fabrication. A theory explaining the charge storage process is developed and applied to the implant-isolated storage correlator. The implant-isolated correlator theory is applied to related structures which employ slightly different storage mechanisms. The ion implanted correlator is used to determine the wave potential associated with a propagating SAW. Characteristics of ZnO-on-Si SAW resonators with sputtered ZnO films limited to the interdigital transducer (IDT) regions are investigated. Upper limits on propagation loss for surface waves on silicon substrates are determined by employing externally coupled limited ZnO SAW resonators. Resonator Q-values are enhanced by restricting the lossy ZnO area and predictions are made as to achievable Q-values for resonators fabricated in the externally coupled configuration. Experimental results for limited ZnO, internally coupled ZnO-on-Si resonators are also given. A complete theory for the mode conversion resonator is presented which predicts the array separation for proper device operation. The theory also gives way to a special condition for spatial ndependence of resonator output with respect to IDT placement. Mode conversion resonators are fabricated which experimentally verify these predictions

    Scalable and high-sensitivity readout of silicon quantum devices

    Get PDF
    Quantum computing is predicted to provide unprecedented enhancements in computational power. A quantum computer requires implementation of a well-defined and controlled quantum system of many interconnected qubits, each defined using fragile quantum states. The interest in a spin-based quantum computer in silicon stems from demonstrations of very long spin-coherence times, high-fidelity single spin control and compatibility with industrial mass-fabrication. Industrial scale fabrication of the silicon platform offers a clear route towards a large-scale quantum computer, however, some of the processes and techniques employed in qubit demonstrators are incompatible with a dense and foundry-fabricated architecture. In particular, spin-readout utilises external sensors that require nearly the same footprint as qubit devices. In this thesis, improved readout techniques for silicon quantum devices are presented and routes towards implementation of a scalable and high-sensitivity readout architecture are investigated. Firstly, readout sensitivity of compact gate-based sensors is improved using a high-quality factor resonator and Josephson parametric amplifier that are fabricated separately from quantum dots. Secondly, an integrated transistor-based control circuit is presented using which sequential readout of two quantum dot devices using the same gate-based sensor is achieved. Finally, a large-scale readout architecture based on random-access and frequency multiplexing is introduced. The impact of readout circuit footprint on readout sensitivity is determined, showing routes towards integration of conventional circuits with quantum devices in a dense architecture, and a fault-tolerant architecture based on mediated exchange is introduced, capable of relaxing the limitations on available control circuit footprint per qubit. Demonstrations are based on foundry-fabricated transistors and few-electron quantum dots, showing that industry fabrication is a viable route towards quantum computation at a scale large enough to begin addressing the most challenging computational problems

    Novel approaches to optomechanical transduction

    Get PDF
    [no abstract

    Thin-film piezoelectric-on-substrate resonators and narrowband filters

    Get PDF
    A new class of micromachined devices called thin-film piezoelectric-on-substrate (TPoS) resonators is introduced, and the performance of these devices in RF and sensor applications is studied. TPoS resonators benefit from high electromechanical coupling of piezoelectric transduction mechanism and superior acoustic properties of a substrate such as single crystal silicon. Therefore, the motional impedance of these resonators are significantly smaller compared to typical capacitively-transduced counterparts while they exhibit relatively high quality factor and power handling and can be operated in air. The combination of all these features suggests TPoS resonators as a viable alternative for current acoustic devices. In this thesis, design and fabrication methods to realize dispersed-frequency lateral-extensional TPoS resonators are discussed. TPoS devices are fabricated on both silicon-on-insulator and thin-film nanocrystalline diamond substrates. The performance of these resonators in simple and low-power oscillators is measured and compared. Furthermore, a unique coupling technique for implementation of high frequency filters is introduced in which dual resonance modes of a single resonant structure are coupled. The measured results of this work show that these filters are suitable candidates for single-chip implementation of multiple-frequency narrow-band filters with high out-of-band rejection in a small footprint.Ph.D.Committee Chair: Farrokh Ayazi; Committee Member: James D. Meindl; Committee Member: John D. Cressler; Committee Member: Nazanin Bassiri-Gharb; Committee Member: Oliver Bran
    • …
    corecore