167 research outputs found

    Doubly Fed Induction Generator System Resonance Active Damping through Stator Virtual Impedance

    Get PDF

    Overview of DFIG-based Wind Power System Resonances under Weak Networks

    Get PDF

    Analysis and control of resonances in HVDC connected DFIG-based offshore wind farm

    Get PDF
    Wechselwirkungen zwischen den weit verbreiteten wechselrichtergekoppelten Netzkomponenten und den passiven Netzkomponenten können einen breiten Frequenzbereich von Resonanzen aufweisen, wodurch massive harmonische Verzerrungen hervorgerufen und sogar die Systemstabilität gefährdet werden. Ihre Folgen könnten die Trennung erneuerbarer und konventioneller Stromerzeuger vom Netz oder die physische Beschädigung empfindlicher Netzanlagen sein. Motiviert durch die Resonanzereignisse der letzten Jahre in windintegrierten Stromversorgungssystemen, untersucht diese Dissertation die resonanzinduzierten harmonischen Verzerrungs- und Stabilitätsprobleme in einem Offshore-Windpark (OWF) mit doppelt gespeisten Asynchrongeneratoren (DFIG) und Netzanschluss mittels Hochspannungsgleichstromübertragung (HGÜ). Ziel dieser Dissertation ist es, die Resonanzen genau zu charakterisieren, ihre Risiken zu bewerten und Lösungen für die Gestaltung der Minderungsstrategie bereitzustellen. Um die dynamischen Eigenschaften eines DFIG-basierten Windparks genau zu erfassen, wird eine umfassende Impedanzmodellierung unter Berücksichtigung des detaillierten PIRegelkreises und der Gleichstromdynamik der Windkraftanlage sowie der Kabelverbindungen des Mittelspannungskollektorsystems (MV) durchgeführt. Durch schrittweise Simulationsüberprüfungen hat sich die aggregierte Modellierung des MVKollektorsystems für die Breitbandresonanzanalyse als geeignet erwiesen. Auf dieser Grundlage wurden sowohl die Bode-Plot-Methode als auch der Ansatz der Resonanzmodusanalyse (RMA) angewendet, um die Resonanzprobleme unter Berücksichtigung verschiedener Betriebsbedingungen des Windparks und Änderungen der Netz-Topologie anzugehen. Ihre Auswirkungen auf die Resonanzfrequenz, die harmonische Verzerrungen und die Dämpfungen zu Resonanzen werden untersucht. Die Orte, an denen Resonanzen am einfachsten angeregt werden können, werden durch die Busbeteiligungsfaktoranalyse identifiziert. Darüber hinaus wird der Einfluss der Frequenzkopplungseffekte von Steuerungs- und Schaltvorgängen für asymmetrische Wandler auf subsynchrone Resonanz- (SSR), Mittel- und Hochfrequenzresonanzen unter Verwendung der aggregierten Modelle analysiert, die aus einem praktischen HGÜverbundenen DFIG-basierten OWF abgeleitet wurden. Für den Frequenzbereich von mehreren Hz bis zu einigen kHz werden große harmonische Verzerrungs- und Stabilitätsprobleme gezeigt. Um den negativen Einfluss von Resonanzen auf die Stromqualität und die Systemstabilität zu verhindern, wurde eine Reihe aktiver Dämpfungsmöglichkeiten untersucht und in das untersuchte windintegrierte Stromnetz implementiert, und es wird eine koordinierte Dämpfungsstrategie vorgeschlagen, mit der Breitbandresonanzen effektiv gedämpft werden können. Schließlich validieren Simulationen in MATLAB / Simulink die Ergebnisse der Impedanzmodellierung, der Resonanzanalyse sowie die Wirksamkeit der Breitbandresonanzdämpfungsstrategie.Interactions among the widely utilised converter-interfaced grid components and passive grid components can introduce wide-frequency range of resonances, thus induce massive harmonic distortions and even endanger system stability. Their consequences might be the tripping of renewable and conventional generation units or the physical damage of sensitive grid assets. Motivated by recent years’ resonance incidents in wind-integrated power systems, this study investigates the resonance-induced harmonic distortion and stability issues in doubly fed induction generator (DFIG)-based offshore wind farm (OWF) with high-voltage direct current (HVDC) grid connection. The objective of this study is to accurately characterize the resonances, evaluate their risks and provide solutions for the design of mitigation strategy. To accurately capture the dynamic characteristics of DFIG-based wind farm, a comprehensive impedance modelling considering the detailed PI control loop and DC dynamics of wind turbine as well as the cable connections of the medium-voltage (MV) collector system is conducted. Through stepwise simulation verifications, aggregated modelling of MV collector system is proved to be suitable for wideband resonance analysis. On this basis, both Bode-plot method and resonance mode analysis (RMA) approach have been adopted to address the resonance issues taking into account various wind farm operating conditions and grid topology changes. Their impacts on resonance frequency, harmonic amplification level and damping level are investigated. The locations where resonances can be most easily excited are identified through bus participation factor analysis. Moreover, the impact of the frequency-coupling effects from asymmetrial converter control and switching operations on subsynchronous resonance (SSR), middleand high-frequency resonances is analyzed using the aggregated models derived from a practical HVDC connected DFIG-based OWF. Large harmonic distortion and stability issues are demonstrated for the frequency range from several Hz to a few kHz. In order to prevent the negative impact of resonances on power quality and system stability, a series of active damping possibilites have been studied and implemented in the studied wind-integrated power system, and a coordinated damping strategy which can effectively damp wideband resonances is proposed. Finally, simulations in MATLAB/Simulink validate the results of impedance modelling, resonance analysis as well as the effectiveness of the wideband resonance damping strategy

    Planning and Operation of Hybrid Renewable Energy Systems

    Get PDF

    Multi-DFIG aggregated model based SSR analysis considering wind spatial distribution

    Get PDF

    Wind Power Integration into Power Systems: Stability and Control Aspects

    Get PDF
    Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex stability issues, such as frequency, voltage, and oscillatory instability, are frequently reported in the power grids of many countries and regions (e.g., Germany, Denmark, Ireland, and South Australia) due to the substantially increased wind power generation. Control techniques, such as virtual/emulated inertia and damping controls, could be developed to address these stability issues, and additional devices, such as energy storage systems, can also be deployed to mitigate the adverse impact of high wind power generation on various system stability problems. Moreover, other wind power integration aspects, such as capacity planning and the short- and long-term forecasting of wind power generation, also require careful attention to ensure grid security and reliability. This book includes fourteen novel research articles published in this Energies Special Issue on Wind Power Integration into Power Systems: Stability and Control Aspects, with topics ranging from stability and control to system capacity planning and forecasting

    Predicted dynamic performance of a possible AC link between SaskPower north and south systems

    Get PDF
    SaskPower has two separate systems, namely the North and the South systems. The South system contains SaskPower major generation and system load. The North system load is located relatively far from its generation (200 to 300 km). The North system is considered, therefore, to be electrically weaker than the South system. Recently there has been an interest in connecting the two systems to improve the security, stability and reliability of the integrated system. Grid interconnections, however, especially between weak and strong systems, often result in the arising of low-frequency oscillations between the newly connected areas. These oscillations that are termed “inter-area oscillations” exhibit, generally poor damping and can severely restrict system operations by requiring the curtailment of electric power transfers level as an operational measure. There are two options for SaskPower North and South systems interconnection, namely HVAC and HVDC interconnections (tie-lines). This thesis reports the results of digital timedomain simulation studies carried out to investigate the dynamic performance of a proposed 260 km, 138 kV double-circuit HVAC tie-line incorporating a hybrid three-phase Thyristor- Controlled Series Capacitor (TCSC) compensation scheme that would connect the SaskPower North and South systems. The potential problems that might arise due to such an interconnection, namely power flow control and low-frequency oscillations are studied and quantified and a feasible solution is proposed. In this context, the effectiveness of the TCSC compensation scheme in damping power system oscillations in the tie-line is investigated. Time-domain simulations were conducted on the benchmark model using the ElectroMagnetic Transients Program (EMTP-RV). The results of the investigations demonstrate that the proposed HVAC link that incorporates a TCSC compensation scheme is effective in mitigating the low-frequency oscillations between the North and South systems for different system contingencies and operating conditions

    Power system dynamic enhancement using phase imbalance series capacitive compensation and doubly fed induction generator-based wind farms

    Get PDF
    ABSTRACT Wind energy is among the fastest growing renewable energy technologies in the world that has been increasing by about 30% a year globally. Wind energy has proven to be a clean, abundant and completely renewable source of energy. Owing to the rapidly increasing use of wind power, the aspect of integrating high level of penetrations wind power into the grid is becoming more and more of reality. Examples of large wind farms in the United States are the 781.5 MW Roscoe wind farm in Texas, the 735.5 MW Horse Hollow Wind Energy Center in Taylor and Nolan County, Texas, the 845 MW Shepherds Flat wind farm in Oregon and the 1550 MW Alta wind farm being developed in California. As most large wind farms in North America employ Doubly-fed Induction Generator (DFIG) wind turbines, their voltage-sourced converter-based back-to-backs offer independent control of the real and reactive power. The use of these control capabilities have been recently proposed for damping power swings, inter-area oscillations as well as subsynchronous resonance. There is, however, a question that is always associated with the use of voltage-sourced converter -based back-to-back wind farms for damping power system oscillations: what happens when there is no wind? The keyword to the answer is “combined”. The potential benefit of using these types of wind farms for damping power system oscillations should always be combined with conventional damping devices (power system stabilizers, thyristor controlled series capacitor, static synchronous series compensator, high voltage dc systems, etc.). This thesis reports the results of digital time-domain simulation studies that are carried out to investigate the potential use of supplemental controls of DFIG-based wind farms combined with a phase imbalanced hybrid series capacitive compensation scheme for damping power system oscillations. The thesis also addresses the recent concern over the case of large share of wind power generation which results in reducing the total inertia of the synchronous generators and degrading the system transient stability. In this regards, the results of the investigations have shown that in such a case; properly designed supplemental controllers for the wind farm converters could be an asset in improving the system transient stability rather than degrading it. Time-domain simulations are conducted on a benchmark model using the ElectroMagnetic Transients program (EMTP-RV)

    Contributions to impedance shaping control techniques for power electronic converters

    Get PDF
    El conformado de la impedancia o admitancia mediante control para convertidores electrónicos de potencia permite alcanzar entre otros objetivos: mejora de la robustez de los controles diseñados, amortiguación de la dinámica de la tensión en caso de cambios de carga, y optimización del filtro de red y del controlador en un solo paso (co-diseño). La conformación de la impedancia debe ir siempre acompañada de un buen seguimiento de referencias. Por tanto, la idea principal es diseñar controladores con una estructura sencilla que equilibren la consecución de los objetivos marcados en cada caso. Este diseño se realiza mediante técnicas modernas, cuya resolución (síntesis del controlador) requiere de herramientas de optimización. La principal ventaja de estas técnicas sobre las clásicas, es decir, las basadas en soluciones algebraicas, es su capacidad para tratar problemas de control complejos (plantas de alto orden y/o varios objetivos) de una forma considerablemente sistemática. El primer problema de control por conformación de la impedancia consiste en reducir el sobreimpulso de tensión ante cambios de carga y minimizar el tamaño de los componentes del filtro pasivo en los convertidores DC-DC. Posteriormente, se diseñan controladores de corriente y tensión para un inversor DC-AC trifásico que logren una estabilidad robusta del sistema para una amplia variedad de filtros. La condición de estabilidad robusta menos conservadora, siendo la impedancia de la red la principal fuente de incertidumbre, es el índice de pasividad. En el caso de los controladores de corriente, el impacto de los lazos superiores en la estabilidad basada en la impedancia también se analiza mediante un índice adicional: máximo valor singular. Cada uno de los índices se aplica a un rango de frecuencias determinado. Finalmente, estas condiciones se incluyen en el diseño en un solo paso del controlador de un convertidor back-to-back utilizado para operar generadores de inducción doblemente alimentados (aerogeneradores tipo 3) presentes en algunos parques eólicos. Esta solución evita los problemas de oscilación subsíncrona, derivados de las líneas de transmisión con condensadores de compensación en serie, a los que se enfrentan estos parques eólicos. Los resultados de simulación y experimentales demuestran la eficacia y versatilidad de la propuesta.Impedance or admittance shaping by control for power electronic converters allows to achieve among other objectives: robustness enhancement of the designed controls, damped voltage dynamics in case of load changes, and grid filter and controller optimization in a single step (co-design). Impedance shaping must always be accompanied by a correct reference tracking performance. Therefore, the main idea is to design controllers with a simple structure that balance the achievement of the objectives set in each case. This design is carried out using modern techniques, whose resolution (controller synthesis) requires optimization tools. The main advantage of these techniques over the classical ones, i.e. those based on algebraic solutions, is their ability to deal with complex control problems (high order plants and/or several objectives) in a considerably systematic way. The first impedance shaping control problem is to reduce voltage overshoot under load changes and minimize the size of passive filter components in DC-DC converters. Subsequently, current and voltage controllers for a three-phase DC-AC inverter are designed to achieve robust system stability for a wide variety of filters. The least conservative robust stability condition, with grid impedance being the main source of uncertainty, is the passivity index. In the case of current controllers, the impact of higher loops on impedance-based stability is also analyzed by an additional index: maximum singular value. Each of the indices is applied to a given frequency range. Finally, these conditions are included in the one-step design of the controller of a back-to-back converter used to operate doubly fed induction generators (type-3 wind turbines) present in some wind farms. This solution avoids the sub-synchronous oscillation problems, derived from transmission lines with series compensation capacitors, faced by these wind farms. Simulation and experimental results demonstrate the effectiveness and versatility of the proposa

    Subsynchronous Resonance in Doubly Fed Induction Generator based Wind farms

    Get PDF
    The objective of this thesis is to investigate the risk for instabilities due to subsynchronous resonance (SSR) conditions in large wind farms connected to series-compensated transmission lines. In particular, the focus is on doubly-fed induction generator (DFIG) based wind farms. Analytical models of the system under investigation are derived in order to understand the root causes that can lead to instabilities. A frequency-dependent approach based on the generalized Nyquist criterion (GNC) has been applied to investigate the risk for SSR in DFIG based wind turbines. Through this approach, it is shown that the observed phenomenon is mainly due to an energy exchange between the power converter of the turbine and the series compensated grid. This phenomenon, here referred to as subsynchronous controller interaction (SSCI), is driven by the control system of the turbine’s converter, which results in a non-dissipative behavior of the DFIG system in the subsynchronous frequency range. The different factors that impact the frequency characteristic of the wind turbine, thereby making the system prone to SSCI interaction, are investigated. Through the analysis, it is shown that in a DFIG wind turbine, the current controller that regulates the rotor current plays a major role in the risk for SSCI, where an increased closed-loop bandwidth negatively impacts the system damping in the subsynchronous frequency range. The level of active power output from the wind farm also has an impact on the overall system stability; in particular, it is shown that the power-dissipation properties of the DFIG improves when the latter is operated in supersynchronous speed range (high-power output).Methods for proper aggregation of the wind turbines in the farm are investigated. Time-domain studies are performed on the aggregated model connected to a series compensated transmission line to verify the analytical results obtained through the frequency domain analysis. Based on the theoretical analysis, mitigation strategy is proposed in order to shape the frequency behavior of the wind turbine. The effectiveness of the proposed mitigation strategy is evaluated both theoretically through frequency-domain analysis and using detailed time-domain simulations
    corecore