25 research outputs found

    Resolving zero-divisors using Hensel lifting

    Full text link
    Algorithms which compute modulo triangular sets must respect the presence of zero-divisors. We present Hensel lifting as a tool for dealing with them. We give an application: a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical triangular set over the rationals. Our modular algorithm naturally generalizes previous work from algebraic number theory. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package.Comment: Shorter version to appear in Proceedings of SYNASC 201

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    The Fourier restriction and Kakeya problems over rings of integers modulo N

    Get PDF
    The Fourier restriction phenomenon and the size of Kakeya sets are explored in the setting of the ring of integers modulo NN for general NN and a striking similarity with the corresponding euclidean problems is observed. One should contrast this with known results in the finite field setting

    Derandomization via Symmetric Polytopes: Poly-Time Factorization of Certain Sparse Polynomials

    Get PDF
    More than three decades ago, after a series of results, Kaltofen and Trager (J. Symb. Comput. 1990) designed a randomized polynomial time algorithm for factorization of multivariate circuits. Derandomizing this algorithm, even for restricted circuit classes, is an important open problem. In particular, the case of s-sparse polynomials, having individual degree d = O(1), is very well-studied (Shpilka, Volkovich ICALP\u2710; Volkovich RANDOM\u2717; Bhargava, Saraf and Volkovich FOCS\u2718, JACM\u2720). We give a complete derandomization for this class assuming that the input is a symmetric polynomial over rationals. Generally, we prove an s^poly(d)-sparsity bound for the factors of symmetric polynomials over any field. This characterizes the known worst-case examples of sparsity blow-up for sparse polynomial factoring. To factor f, we use techniques from convex geometry and exploit symmetry (only) in the Newton polytope of f. We prove a crucial result about convex polytopes, by introducing the concept of "low min-entropy", which might also be of independent interest

    The K-theory of (compound) Du Val singularities

    Get PDF
    This thesis gives a complete description of the Grothendieck group and divisor class group for large families of two and three dimensional singularities. The main results presented throughout, and summarised in Theorem 8.1.1, give an explicit description of the Grothendieck group and class group of Kleinian singularities, their deformations, and compound Du Val (cDV) singularities in a variety of settings. For such rings R, the main results assert that there exists an isomorphism between G_0(R) and Z + Cl(R), and the class group is explicitly presented. More precisely, we establish these results for 2-dimensional deformations of global type A Kleinian singularities, 3-dimensional isolated complete local cDV singularities admitting a noncommutative crepant resolution, any 3-dimensional type A complete local cDV singularity, polyhedral quotient singularities (which are non-isolated), and any isolated cDV singularity admitting a minimal model with only type cAn singularities. We also study various complex reflection groups in the setting of symplectic quotient singularities, for which this isomorphism does not hold, and conjecture based on computer evidence that the reduced Grothendieck group in the case of the symmetric group has size n!. This work requires a range of tools including, but not limited to, Nagata’s theo- rem, knitting techniques, Knörrer periodicity, the singularity category, and the computer-algebra system MAGMA. Of particular note is the application of knitting techniques which leads to independently interesting results on the symmetry of the quivers underlying the modifying algebras of Kleinian and cDV singularities

    Parameter Synthesis for Markov Models

    Full text link
    Markov chain analysis is a key technique in reliability engineering. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not---or only partially---known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis evaluates a reliability metric for a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given reliability or performance specification φ\varphi. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise reliability? This paper presents various analysis algorithms for parametric Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy φ\varphi?, (b) which regions satisfy φ\varphi and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.Comment: 38 page

    Very stable Higgs bundles, equivariant multiplicity and mirror symmetry

    Get PDF
    We define and study the existence of very stable Higgs bundles on Riemann surfaces, how it implies a precise formula for the multiplicity of the very stable components of the global nilpotent cone and its relationship to mirror symmetry. The main ingredients are the Bialynicki-Birula theory of C{\mathbb C}^*-actions on semiprojective varieties, C{\mathbb C}^* characters of indices of C{\mathbb C}^*-equivariant coherent sheaves, Hecke transformation for Higgs bundles, relative Fourier-Mukai transform along the Hitchin fibration, hyperholomorphic structures on universal bundles and cominuscule Higgs bundles.Comment: 91 pages, refereed version, to appear in Inventiones Mathematica
    corecore