287 research outputs found

    A Knowledge-Driven Approach to Classifying Object and Attribute Coreferences in Opinion Mining

    Full text link
    Classifying and resolving coreferences of objects (e.g., product names) and attributes (e.g., product aspects) in opinionated reviews is crucial for improving the opinion mining performance. However, the task is challenging as one often needs to consider domain-specific knowledge (e.g., iPad is a tablet and has aspect resolution) to identify coreferences in opinionated reviews. Also, compiling a handcrafted and curated domain-specific knowledge base for each domain is very time consuming and arduous. This paper proposes an approach to automatically mine and leverage domain-specific knowledge for classifying objects and attribute coreferences. The approach extracts domain-specific knowledge from unlabeled review data and trains a knowledgeaware neural coreference classification model to leverage (useful) domain knowledge together with general commonsense knowledge for the task. Experimental evaluation on realworld datasets involving five domains (product types) shows the effectiveness of the approach.Comment: Accepted to Proceedings of EMNLP 2020 (Findings

    It's absolutely divine! Can fine-grained sentiment analysis benefit from coreference resolution?

    Get PDF
    While it has been claimed that anaphora or coreference resolution plays an important role in opinion mining, it is not clear to what extent coreference resolution actually boosts performance, if at all. In this paper, we investigate the potential added value of coreference resolution for the aspect-based sentiment analysis of restaurant reviews in two languages, English and Dutch. We focus on the task of aspect category classification and investigate whether including coreference information prior to classification to resolve implicit aspect mentions is beneficial. Because coreference resolution is not a solved task in NLP, we rely on both automatically-derived and gold-standard coreference relations, allowing us to investigate the true upper bound. By training a classifier on a combination of lexical and semantic features, we show that resolving the coreferential relations prior to classification is beneficial in a joint optimization setup. However, this is only the case when relying on gold-standard relations and the result is more outspoken for English than for Dutch. When validating the optimal models, however, we found that only the Dutch pipeline is able to achieve a satisfying performance on a held-out test set and does so regardless of whether coreference information was included

    Unifying context with labeled property graph: A pipeline-based system for comprehensive text representation in NLP

    Get PDF
    Extracting valuable insights from vast amounts of unstructured digital text presents significant challenges across diverse domains. This research addresses this challenge by proposing a novel pipeline-based system that generates domain-agnostic and task-agnostic text representations. The proposed approach leverages labeled property graphs (LPG) to encode contextual information, facilitating the integration of diverse linguistic elements into a unified representation. The proposed system enables efficient graph-based querying and manipulation by addressing the crucial aspect of comprehensive context modeling and fine-grained semantics. The effectiveness of the proposed system is demonstrated through the implementation of NLP components that operate on LPG-based representations. Additionally, the proposed approach introduces specialized patterns and algorithms to enhance specific NLP tasks, including nominal mention detection, named entity disambiguation, event enrichments, event participant detection, and temporal link detection. The evaluation of the proposed approach, using the MEANTIME corpus comprising manually annotated documents, provides encouraging results and valuable insights into the system\u27s strengths. The proposed pipeline-based framework serves as a solid foundation for future research, aiming to refine and optimize LPG-based graph structures to generate comprehensive and semantically rich text representations, addressing the challenges associated with efficient information extraction and analysis in NLP

    Deep Learning With Sentiment Inference For Discourse-Oriented Opinion Analysis

    Get PDF
    Opinions are omnipresent in written and spoken text ranging from editorials, reviews, blogs, guides, and informal conversations to written and broadcast news. However, past research in NLP has mainly addressed explicit opinion expressions, ignoring implicit opinions. As a result, research in opinion analysis has plateaued at a somewhat superficial level, providing methods that only recognize what is explicitly said and do not understand what is implied. In this dissertation, we develop machine learning models for two tasks that presumably support propagation of sentiment in discourse, beyond one sentence. The first task we address is opinion role labeling, i.e.\ the task of detecting who expressed a given attitude toward what or who. The second task is abstract anaphora resolution, i.e.\ the task of finding a (typically) non-nominal antecedent of pronouns and noun phrases that refer to abstract objects like facts, events, actions, or situations in the preceding discourse. We propose a neural model for labeling of opinion holders and targets and circumvent the problems that arise from the limited labeled data. In particular, we extend the baseline model with different multi-task learning frameworks. We obtain clear performance improvements using semantic role labeling as the auxiliary task. We conduct a thorough analysis to demonstrate how multi-task learning helps, what has been solved for the task, and what is next. We show that future developments should improve the ability of the models to capture long-range dependencies and consider other auxiliary tasks such as dependency parsing or recognizing textual entailment. We emphasize that future improvements can be measured more reliably if opinion expressions with missing roles are curated and if the evaluation considers all mentions in opinion role coreference chains as well as discontinuous roles. To the best of our knowledge, we propose the first abstract anaphora resolution model that handles the unrestricted phenomenon in a realistic setting. We cast abstract anaphora resolution as the task of learning attributes of the relation that holds between the sentence with the abstract anaphor and its antecedent. We propose a Mention-Ranking siamese-LSTM model (MR-LSTM) for learning what characterizes the mentioned relation in a data-driven fashion. The current resources for abstract anaphora resolution are quite limited. However, we can train our models without conventional data for abstract anaphora resolution. In particular, we can train our models on many instances of antecedent-anaphoric sentence pairs. Such pairs can be automatically extracted from parsed corpora by searching for a common construction which consists of a verb with an embedded sentence (complement or adverbial), applying a simple transformation that replaces the embedded sentence with an abstract anaphor, and using the cut-off embedded sentence as the antecedent. We refer to the extracted data as silver data. We evaluate our MR-LSTM models in a realistic task setup in which models need to rank embedded sentences and verb phrases from the sentence with the anaphor as well as a few preceding sentences. We report the first benchmark results on an abstract anaphora subset of the ARRAU corpus \citep{uryupina_et_al_2016} which presents a greater challenge due to a mixture of nominal and pronominal anaphors as well as a greater range of confounders. We also use two additional evaluation datasets: a subset of the CoNLL-12 shared task dataset \citep{pradhan_et_al_2012} and a subset of the ASN corpus \citep{kolhatkar_et_al_2013_crowdsourcing}. We show that our MR-LSTM models outperform the baselines in all evaluation datasets, except for events in the CoNLL-12 dataset. We conclude that training on the small-scale gold data works well if we encounter the same type of anaphors at the evaluation time. However, the gold training data contains only six shell nouns and events and thus resolution of anaphors in the ARRAU corpus that covers a variety of anaphor types benefits from the silver data. Our MR-LSTM models for resolution of abstract anaphors outperform the prior work for shell noun resolution \citep{kolhatkar_et_al_2013} in their restricted task setup. Finally, we try to get the best out of the gold and silver training data by mixing them. Moreover, we speculate that we could improve the training on a mixture if we: (i) handle artifacts in the silver data with adversarial training and (ii) use multi-task learning to enable our models to make ranking decisions dependent on the type of anaphor. These proposals give us mixed results and hence a robust mixed training strategy remains a challenge

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems

    Extracting and Attributing Quotes in Text and Assessing them as Opinions

    Get PDF
    News articles often report on the opinions that salient people have about important issues. While it is possible to infer an opinion from a person's actions, it is much more common to demonstrate that a person holds an opinion by reporting on what they have said. These instances of speech are called reported speech, and in this thesis we set out to detect instances of reported speech, attribute them to their speaker, and to identify which instances provide evidence of an opinion. We first focus on extracting reported speech, which involves finding all acts of communication that are reported in an article. Previous work has approached this task with rule-based methods, however there are several factors that confound these approaches. To demonstrate this, we build a corpus of 965 news articles, where we mark all instances of speech. We then show that a supervised token-based approach outperforms all of our rule-based alternatives, even in extracting direct quotes. Next, we examine the problem of finding the speaker of each quote. For this task we annotate the same 965 news articles with links from each quote to its speaker. Using this, and three other corpora, we develop new methods and features for quote attribution, which achieve state-of-the-art accuracy on our corpus and strong results on the others. Having extracted quotes and determined who spoke them, we move on to the opinion mining part of our work. Most of the task definitions in opinion mining do not easily work with opinions in news, so we define a new task, where the aim is to classify whether quotes demonstrate support, neutrality, or opposition to a given position statement. This formulation improved annotator agreement when compared to our earlier annotation schemes. Using this we build an opinion corpus of 700 news documents covering 7 topics. In this thesis we do not attempt this full task, but we do present preliminary results

    Tipping the scales: exploring the added value of deep semantic processing on readability prediction and sentiment analysis

    Get PDF
    Applications which make use of natural language processing (NLP) are said to benefit more from incorporating a rich model of text meaning than from a basic representation in the form of bag-of-words. This thesis set out to explore the added value of incorporating deep semantic information in two end-user applications that normally rely mostly on superficial and lexical information, viz. readability prediction and aspect-based sentiment analysis. For both applications we apply supervised machine learning techniques and focus on the incorporation of coreference and semantic role information. To this purpose, we adapted a Dutch coreference resolution system and developed a semantic role labeler for Dutch. We tested the cross-genre robustness of both systems and in a next phase retrained them on a large corpus comprising a variety of text genres. For the readability prediction task, we first built a general-purpose corpus consisting of a large variety of text genres which was then assessed on readability. Moreover, we proposed an assessment technique which has not previously been used in readability assessment, namely crowdsourcing, and revealed that crowdsourcing is a viable alternative to the more traditional assessment technique of having experts assign labels. We built the first state-of-the-art classification-based readability prediction system relying on a rich feature space of traditional, lexical, syntactic and shallow semantic features. Furthermore, we enriched this tool by introducing new features based on coreference resolution and semantic role labeling. We then explored the added value of incorporating this deep semantic information by performing two different rounds of experiments. In the first round these features were manually in- or excluded and in the second round joint optimization experiments were performed using a wrapper-based feature selection system based on genetic algorithms. In both setups, we investigated whether there was a difference in performance when these features were derived from gold standard information compared to when they were automatically generated, which allowed us to assess the true upper bound of incorporating this type of information. Our results revealed that readability classification definitely benefits from the incorporation of semantic information in the form of coreference and semantic role features. More precisely, we found that the best results for both tasks were achieved after jointly optimizing the hyperparameters and semantic features using genetic algorithms. Contrary to our expectations, we observed that our system achieved its best performance when relying on the automatically predicted deep semantic features. This is an interesting result, as our ultimate goal is to predict readability based exclusively on automatically-derived information sources. For the aspect-based sentiment analysis task, we developed the first Dutch end-to-end system. We therefore collected a corpus of Dutch restaurant reviews and annotated each review with aspect term expressions and polarity. For the creation of our system, we distinguished three individual subtasks: aspect term extraction, aspect category classification and aspect polarity classification. We then investigated the added value of our two semantic information layers in the second subtask of aspect category classification. In a first setup, we focussed on investigating the added value of performing coreference resolution prior to classification in order to derive which implicit aspect terms (anaphors) could be linked to which explicit aspect terms (antecedents). In these experiments, we explored how the performance of a baseline classifier relying on lexical information alone would benefit from additional semantic information in the form of lexical-semantic and semantic role features. We hypothesized that if coreference resolution was performed prior to classification, more of this semantic information could be derived, i.e. for the implicit aspect terms, which would result in a better performance. In this respect, we optimized our classifier using a wrapper-based approach for feature selection and we compared a setting where we relied on gold-standard anaphor-antecedent pairs to a setting where these had been predicted. Our results revealed a very moderate performance gain and underlined that incorporating coreference information only proves useful when integrating gold-standard coreference annotations. When coreference relations were derived automatically, this led to an overall decrease in performance because of semantic mismatches. When comparing the semantic role to the lexical-semantic features, it seemed that especially the latter features allow for a better performance. In a second setup, we investigated how to resolve implicit aspect terms. We compared a setting where gold-standard coreference resolution was used for this purpose to a setting where the implicit aspects were derived from a simple subjectivity heuristic. Our results revealed that using this heuristic results in a better coverage and performance, which means that, overall, it was difficult to find an added value in resolving coreference first. Does deep semantic information help tip the scales on performance? For Dutch readability prediction, we found that it does, when integrated in a state-of-the-art classifier. By using such information for Dutch aspect-based sentiment analysis, we found that this approach adds weight to the scales, but cannot make them tip

    Fusing Automatically Extracted Annotations for the Semantic Web

    Get PDF
    This research focuses on the problem of semantic data fusion. Although various solutions have been developed in the research communities focusing on databases and formal logic, the choice of an appropriate algorithm is non-trivial because the performance of each algorithm and its optimal configuration parameters depend on the type of data, to which the algorithm is applied. In order to be reusable, the fusion system must be able to select appropriate techniques and use them in combination. Moreover, because of the varying reliability of data sources and algorithms performing fusion subtasks, uncertainty is an inherent feature of semantically annotated data and has to be taken into account by the fusion system. Finally, the issue of schema heterogeneity can have a negative impact on the fusion performance. To address these issues, we propose KnoFuss: an architecture for Semantic Web data integration based on the principles of problem-solving methods. Algorithms dealing with different fusion subtasks are represented as components of a modular architecture, and their capabilities are described formally. This allows the architecture to select appropriate methods and configure them depending on the processed data. In order to handle uncertainty, we propose a novel algorithm based on the Dempster-Shafer belief propagation. KnoFuss employs this algorithm to reason about uncertain data and method results in order to refine the fused knowledge base. Tests show that these solutions lead to improved fusion performance. Finally, we addressed the problem of data fusion in the presence of schema heterogeneity. We extended the KnoFuss framework to exploit results of automatic schema alignment tools and proposed our own schema matching algorithm aimed at facilitating data fusion in the Linked Data environment. We conducted experiments with this approach and obtained a substantial improvement in performance in comparison with public data repositories
    • …
    corecore