95 research outputs found

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    A survey on constructive methods for the Oberwolfach problem and its variants

    Full text link
    The generalized Oberwolfach problem asks for a decomposition of a graph GG into specified 2-regular spanning subgraphs F1,…,FkF_1,\ldots, F_k, called factors. The classic Oberwolfach problem corresponds to the case when all of the factors are pairwise isomorphic, and GG is the complete graph of odd order or the complete graph of even order with the edges of a 11-factor removed. When there are two possible factor types, it is called the Hamilton-Waterloo problem. In this paper we present a survey of constructive methods which have allowed recent progress in this area. Specifically, we consider blow-up type constructions, particularly as applied to the case when each factor consists of cycles of the same length. We consider the case when the factors are all bipartite (and hence consist of even cycles) and a method for using circulant graphs to find solutions. We also consider constructions which yield solutions with well-behaved automorphisms.Comment: To be published in the Fields Institute Communications book series. 23 pages, 2 figure

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, ℓ\ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,ℓ)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,ℓ)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=qℓ−1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic

    Kirchhoff Graphs

    Get PDF
    Kirchhoff\u27s laws are well-studied for electrical networks with voltage and current sources, and edges marked by resistors. Kirchhoff\u27s voltage law states that the sum of voltages around any circuit of the network graph is zero, while Kirchhoff\u27s current law states that the sum of the currents along any cutset of the network graph is zero. Given a network, these requirements may be encoded by the circuit matrix and cutset matrix of the network graph. The columns of these matrices are indexed by the edges of the network graph, and their row spaces are orthogonal complements. For (chemical or electrochemical) reaction networks, one must naturally study the opposite problem, beginning with the stoichiometric matrix rather than the network graph. This leads to the following question: given such a matrix, what is a suitable graphic rendering of a network that properly visualizes the underlying chemical reactions? Although we can not expect uniqueness, the goal is to prove existence of such a graph for any matrix. Specifically, we study Kirchhoff graphs, originally introduced by Fehribach. Mathematically, Kirchhoff graphs represent the orthocomplementarity of the row space and null space of integer-valued matrices. After introducing the definition of Kirchhoff graphs, we will survey Kirchhoff graphs in the context of several diverse branches of mathematics. Beginning with combinatorial group theory, we consider Cayley graphs of the additive group of vector spaces, and resolve the existence problem for matrices over finite fields. Moving to linear algebra, we draw a number of conclusions based on a purely matrix-theoretic definition of Kirchhoff graphs, specifically regarding the number of vector edges. Next we observe a geometric approach, reviewing James Clerk Maxwell\u27s theory of reciprocal figures, and presenting a number of results on Kirchhoff duality. We then turn to algebraic combinatorics, where we study equitable partitions, quotients, and graph automorphisms. In addition to classifying the matrices that are the quotient of an equitable partition, we demonstrate that many Kirchhoff graphs arise from equitable edge-partitions of directed graphs. Finally we study matroids, where we review Tutte\u27s algorithm for determining when a binary matroid is graphic, and extend this method to show that every binary matroid is Kirchhoff. The underlying theme throughout each of these investigations is determining new ways to both recognize and construct Kirchhoff graphs

    Master index to volumes 251-260

    Get PDF

    Minimal Ramsey graphs, orthogonal Latin squares, and hyperplane coverings

    Get PDF
    This thesis consists of three independent parts. The first part of the thesis is concerned with Ramsey theory. Given an integer q≥2q\geq 2, a graph GG is said to be \emph{qq-Ramsey} for another graph HH if in any qq-edge-coloring of GG there exists a monochromatic copy of HH. The central line of research in this area investigates the smallest number of vertices in a qq-Ramsey graph for a given HH. In this thesis, we explore two different directions. First, we will be interested in the smallest possible minimum degree of a minimal (with respect to subgraph inclusion) qq-Ramsey graph for a given HH. This line of research was initiated by Burr, Erdős, and Lovász in the 1970s. We study the minimum degree of a minimal Ramsey graph for a random graph and investigate how many vertices of small degree a minimal Ramsey graph for a given HH can contain. We also consider the minimum degree problem in a more general asymmetric setting. Second, it is interesting to ask how small modifications to the graph HH affect the corresponding collection of qq-Ramsey graphs. Building upon the work of Fox, Grinshpun, Liebenau, Person, and Szabó and Rödl and Siggers, we prove that adding even a single pendent edge to the complete graph KtK_t changes the collection of 2-Ramsey graphs significantly. The second part of the thesis deals with orthogonal Latin squares. A {\em Latin square of order nn} is an n×nn\times n array with entries in [n][n] such that each integer appears exactly once in every row and every column. Two Latin squares LL and L′L' are said to be {\em orthogonal} if, for all x,y∈[n]x,y\in [n], there is a unique pair (i,j)∈[n]2(i,j)\in [n]^2 such that L(i,j)=xL(i,j) = x and L′(i,j)=yL'(i,j) = y; a system of {\em kk mutually orthogonal Latin squares}, or a {\em kk-MOLS}, is a set of kk pairwise orthogonal Latin squares. Motivated by a well-known result determining the number of different Latin squares of order nn log-asymptotically, we study the number of kk-MOLS of order nn. Earlier results on this problem were obtained by Donovan and Grannell and Keevash and Luria. We establish new upper bounds for a wide range of values of k=k(n)k = k(n). We also prove a new, log-asymptotically tight, bound on the maximum number of other squares a single Latin square can be orthogonal to. The third part of the thesis is concerned with grid coverings with multiplicities. In particular, we study the minimum number of hyperplanes necessary to cover all points but one of a given finite grid at least kk times, while covering the remaining point fewer times. We study this problem for the grid F2n\mathbb{F}_2^n, determining the number exactly when one of the parameters nn and kk is much larger than the other and asymptotically in all other cases. This generalizes a classic result of Jamison for k=1k=1. Additionally, motivated by the recent work of Clifton and Huang and Sauermann and Wigderson for the hypercube { 0,1 }n⊆Rn\set{0,1}^n\subseteq\mathbb{R}^n, we study hyperplane coverings for different grids over R\mathbb{R}, under the stricter condition that the remaining point is omitted completely. We focus on two-dimensional real grids, showing a variety of results and demonstrating that already this setting offers a range of possible behaviors.Diese Dissertation besteht aus drei unabh\"angigen Teilen. Der erste Teil beschäftigt sich mit Ramseytheorie. Für eine ganze Zahl q≥2q\geq 2 nennt man einen Graphen \emph{qq-Ramsey} f\"ur einen anderen Graphen HH, wenn jede Kantenf\"arbung mit qq Farben einen einfarbigen Teilgraphen enthält, der isomorph zu HH ist. Das zentrale Problem in diesem Gebiet ist die minimale Anzahl von Knoten in einem solchen Graphen zu bestimmen. In dieser Dissertation betrachten wir zwei verschiedene Varianten. Als erstes, beschäftigen wir uns mit dem kleinstm\"oglichen Minimalgrad eines minimalen (bezüglich Teilgraphen) qq-Ramsey-Graphen f\"ur einen gegebenen Graphen HH. Diese Frage wurde zuerst von Burr, Erd\H{o}s und Lov\'asz in den 1970er-Jahren studiert. Wir betrachten dieses Problem f\"ur einen Zufallsgraphen und untersuchen, wie viele Knoten kleinen Grades ein Ramsey-Graph f\"ur gegebenes HH enthalten kann. Wir untersuchen auch eine asymmetrische Verallgemeinerung des Minimalgradproblems. Als zweites betrachten wir die Frage, wie sich die Menge aller qq-Ramsey-Graphen f\"ur HH verändert, wenn wir den Graphen HH modifizieren. Aufbauend auf den Arbeiten von Fox, Grinshpun, Liebenau, Person und Szabó und Rödl und Siggers beweisen wir, dass bereits der Graph, der aus KtK_t mit einer h\"angenden Kante besteht, eine sehr unterschiedliche Menge von 2-Ramsey-Graphen besitzt im Vergleich zu KtK_t. Im zweiten Teil geht es um orthogonale lateinische Quadrate. Ein \emph{lateinisches Quadrat der Ordnung nn} ist eine n×nn\times n-Matrix, gef\"ullt mit den Zahlen aus [n][n], in der jede Zahl genau einmal pro Zeile und einmal pro Spalte auftritt. Zwei lateinische Quadrate sind \emph{orthogonal} zueinander, wenn f\"ur alle x,y∈[n]x,y\in[n] genau ein Paar (i,j)∈[n]2(i,j)\in [n]^2 existiert, sodass es L(i,j)=xL(i,j) = x und L′(i,j)=yL'(i,j) = y gilt. Ein \emph{k-MOLS der Ordnung nn} ist eine Menge von kk lateinischen Quadraten, die paarweise orthogonal sind. Motiviert von einem bekannten Resultat, welches die Anzahl von lateinischen Quadraten der Ordnung nn log-asymptotisch bestimmt, untersuchen wir die Frage, wie viele kk-MOLS der Ordnung nn es gibt. Dies wurde bereits von Donovan und Grannell und Keevash und Luria studiert. Wir verbessern die beste obere Schranke f\"ur einen breiten Bereich von Parametern k=k(n)k=k(n). Zusätzlich bestimmen wir log-asymptotisch zu wie viele anderen lateinischen Quadraten ein lateinisches Quadrat orthogonal sein kann. Im dritten Teil studieren wir, wie viele Hyperebenen notwendig sind, um die Punkte eines endlichen Gitters zu überdecken, sodass ein bestimmter Punkt maximal (k−1)(k-1)-mal bedeckt ist und alle andere mindestens kk-mal. Wir untersuchen diese Anzahl f\"ur das Gitter F2n\mathbb{F}_2^n asymptotisch und sogar genau, wenn eins von nn und kk viel größer als das andere ist. Dies verallgemeinert ein Ergebnis von Jamison für den Fall k=1k=1. Au{\ss}erdem betrachten wir dieses Problem f\"ur Gitter im reellen Vektorraum, wenn der spezielle Punkt überhaupt nicht bedeckt ist. Dies ist durch die Arbeiten von Clifton und Huang und Sauermann und Wigderson motiviert, die den Hyperwürfel { 0,1 }n⊆Rn\set{0,1}^n\subseteq \mathbb{R}^n untersucht haben. Wir konzentrieren uns auf zwei-dimensionale Gitter und zeigen, dass schon diese sich sehr unterschiedlich verhalten können
    • …
    corecore