1,711 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Detaching and Boosting: Dual Engine for Scale-Invariant Self-Supervised Monocular Depth Estimation

    Full text link
    Monocular depth estimation (MDE) in the self-supervised scenario has emerged as a promising method as it refrains from the requirement of ground truth depth. Despite continuous efforts, MDE is still sensitive to scale changes especially when all the training samples are from one single camera. Meanwhile, it deteriorates further since camera movement results in heavy coupling between the predicted depth and the scale change. In this paper, we present a scale-invariant approach for self-supervised MDE, in which scale-sensitive features (SSFs) are detached away while scale-invariant features (SIFs) are boosted further. To be specific, a simple but effective data augmentation by imitating the camera zooming process is proposed to detach SSFs, making the model robust to scale changes. Besides, a dynamic cross-attention module is designed to boost SIFs by fusing multi-scale cross-attention features adaptively. Extensive experiments on the KITTI dataset demonstrate that the detaching and boosting strategies are mutually complementary in MDE and our approach achieves new State-of-The-Art performance against existing works from 0.097 to 0.090 w.r.t absolute relative error. The code will be made public soon.Comment: Accepted by IEEE Robotics and Automation Letters (RAL

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    Variational Downscaling, Fusion and Assimilation of Hydrometeorological States via Regularized Estimation

    Full text link
    Improved estimation of hydrometeorological states from down-sampled observations and background model forecasts in a noisy environment, has been a subject of growing research in the past decades. Here, we introduce a unified framework that ties together the problems of downscaling, data fusion and data assimilation as ill-posed inverse problems. This framework seeks solutions beyond the classic least squares estimation paradigms by imposing proper regularization, which are constraints consistent with the degree of smoothness and probabilistic structure of the underlying state. We review relevant regularization methods in derivative space and extend classic formulations of the aforementioned problems with particular emphasis on hydrologic and atmospheric applications. Informed by the statistical characteristics of the state variable of interest, the central results of the paper suggest that proper regularization can lead to a more accurate and stable recovery of the true state and hence more skillful forecasts. In particular, using the Tikhonov and Huber regularization in the derivative space, the promise of the proposed framework is demonstrated in static downscaling and fusion of synthetic multi-sensor precipitation data, while a data assimilation numerical experiment is presented using the heat equation in a variational setting

    Capturing and viewing gigapixel images

    Get PDF
    We present a system to capture and view "Gigapixel images": very high resolution, high dynamic range, and wide angle imagery consisting of several billion pixels each. A specialized camera mount, in combination with an automated pipeline for alignment, exposure compensation, and stitching, provide the means to acquire Gigapixel images with a standard camera and lens. More importantly, our novel viewer enables exploration of such images at interactive rates over a network, while dynamically and smoothly interpolating the projection between perspective and curved projections, and simultaneously modifying the tone-mapping to ensure an optimal view of the portion of the scene being viewed.publishe
    • …
    corecore