22,661 research outputs found

    A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

    Full text link
    We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov '02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis '93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.Comment: Full-length version of paper to appear in Proceedings of the 30th Annual Computational Complexity Conference (CCC '15), June 201

    A pp-adic RanSaC algorithm for stereo vision using Hensel lifting

    Full text link
    A pp-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised pp-adic hierarchical classification algorithm imitating the known LBG quantisation method classifies the solutions for all the samples after having determined the number of clusters using the known intra-inter validity of clusterings. In the successful case, a cluster ranking will determine the cluster containing a 2-adic approximation to the "true" solution of the problem.Comment: 15 pages; typos removed, abstract changed, computation error remove

    Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints

    Get PDF
    The monadic shallow linear Horn fragment is well-known to be decidable and has many application, e.g., in security protocol analysis, tree automata, or abstraction refinement. It was a long standing open problem how to extend the fragment to the non-Horn case, preserving decidability, that would, e.g., enable to express non-determinism in protocols. We prove decidability of the non-Horn monadic shallow linear fragment via ordered resolution further extended with dismatching constraints and discuss some applications of the new decidable fragment.Comment: 29 pages, long version of CADE-26 pape

    Anti-selfdual Lagrangians II: Unbounded non self-adjoint operators and evolution equations

    Full text link
    This paper is a continuation of [13], where new variational principles were introduced based on the concept of anti-selfdual (ASD) Lagrangians. We continue here the program of using these Lagrangians to provide variational formulations and resolutions to various basic equations and evolutions which do not normally fit in the Euler-Lagrange framework. In particular, we consider stationary equations of the form −Au∈∂ϕ(u) -Au\in \partial \phi (u) as well as i dissipative evolutions of the form −u˙(t)−Atu(t)+ωu(t)∈∂ϕ(t,u(t))-\dot{u}(t)-A_t u(t)+\omega u(t) \in \partial \phi (t, u(t)) were ϕ\phi is a convex potential on an infinite dimensional space. In this paper, the emphasis is on the cases where the differential operators involved are not necessarily bounded, hence completing the results established in [13] for bounded linear operators. Our main applications deal with various nonlinear boundary value problems and parabolic initial value equations governed by the transport operator with or without a diffusion term.Comment: 30 pages. For the most updated version of this paper, please visit http://www.pims.math.ca/~nassif/pims_papers.htm

    A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations

    Get PDF
    This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (that is, a semi-explicit DAE system of differentiation index 1) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity

    Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

    Full text link
    The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.Comment: submitted to ACM Transactions on Computational Logic (TOCL
    • …
    corecore