282 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Enhancing the Resolution of the Spectrogram of Non-Stationary Mobile Radio Channels by Using Massive MIMO Techniques

    Get PDF
    This paper is concerned with the enhancement of the resolution of the spectrogram of non-stationary mobile radio channels using massive multiple-input multiple-output (MIMO) techniques. By starting from a new generic geometrical model for a non-stationary MIMO channel, we derive the complex MIMO channel gains under the assumption that the mobile station (MS) moves with time-variant speed. Closed-form solutions are derived for the spectrogram of the complex MIMO channel gains by using a Gaussian window. It is shown that the window spread can be optimized subject to the MS's speed change. Furthermore, it is shown that the spectrogram can be split into an auto-term and a cross-term. The auto-term contains the useful time-variant spectral information, while the cross-term can be identified as a sum of spectral interference components, which restrict considerably the time-frequency resolution of the spectrogram. Moreover, it is shown that the effect of the cross-term can be drastically reduced by using massive MIMO techniques. The proposed method is not only important for estimating timevariant Doppler power spectra with high resolution, but it also pioneers the development of new passive acceleration/deceleration estimation methods and the development of new non-wearable fall detection systems.acceptedVersionnivĂĄ

    Domain-Size Pooling in Local Descriptors: DSP-SIFT

    Full text link
    We introduce a simple modification of local image descriptors, such as SIFT, based on pooling gradient orientations across different domain sizes, in addition to spatial locations. The resulting descriptor, which we call DSP-SIFT, outperforms other methods in wide-baseline matching benchmarks, including those based on convolutional neural networks, despite having the same dimension of SIFT and requiring no training.Comment: Extended version of the CVPR 2015 paper. Technical Report UCLA CSD 14002
    • …
    corecore