2,130 research outputs found

    JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics

    Full text link
    In applications of machine learning to particle physics, a persistent challenge is how to go beyond discrimination to learn about the underlying physics. To this end, a powerful tool would be a framework for unsupervised learning, where the machine learns the intricate high-dimensional contours of the data upon which it is trained, without reference to pre-established labels. In order to approach such a complex task, an unsupervised network must be structured intelligently, based on a qualitative understanding of the data. In this paper, we scaffold the neural network's architecture around a leading-order model of the physics underlying the data. In addition to making unsupervised learning tractable, this design actually alleviates existing tensions between performance and interpretability. We call the framework JUNIPR: "Jets from UNsupervised Interpretable PRobabilistic models". In this approach, the set of particle momenta composing a jet are clustered into a binary tree that the neural network examines sequentially. Training is unsupervised and unrestricted: the network could decide that the data bears little correspondence to the chosen tree structure. However, when there is a correspondence, the network's output along the tree has a direct physical interpretation. JUNIPR models can perform discrimination tasks, through the statistically optimal likelihood-ratio test, and they permit visualizations of discrimination power at each branching in a jet's tree. Additionally, JUNIPR models provide a probability distribution from which events can be drawn, providing a data-driven Monte Carlo generator. As a third application, JUNIPR models can reweight events from one (e.g. simulated) data set to agree with distributions from another (e.g. experimental) data set.Comment: 37 pages, 24 figure

    Non-attracting Regions of Local Minima in Deep and Wide Neural Networks

    Full text link
    Understanding the loss surface of neural networks is essential for the design of models with predictable performance and their success in applications. Experimental results suggest that sufficiently deep and wide neural networks are not negatively impacted by suboptimal local minima. Despite recent progress, the reason for this outcome is not fully understood. Could deep networks have very few, if at all, suboptimal local optima? or could all of them be equally good? We provide a construction to show that suboptimal local minima (i.e., non-global ones), even though degenerate, exist for fully connected neural networks with sigmoid activation functions. The local minima obtained by our construction belong to a connected set of local solutions that can be escaped from via a non-increasing path on the loss curve. For extremely wide neural networks of decreasing width after the wide layer, we prove that every suboptimal local minimum belongs to such a connected set. This provides a partial explanation for the successful application of deep neural networks. In addition, we also characterize under what conditions the same construction leads to saddle points instead of local minima for deep neural networks
    • …
    corecore