284 research outputs found

    Single frame super-resolution image system

    Get PDF
    The estimation of some unknown quantity information from known observable information can be viewed as a specific statistical process which needs an extra source of information prediction strategy. In this regard, image super-resolution is an important application In this thesis, we proposed a new image interpolation method based on Redundant Discrete Wavelet Transform (RDWT) and self-adaptive processes in which edge direction details are considered to solve single-frame image super-resolution task. Information about sharp variations, both in horizontal and vertical directions derived from wavelet transform sub-bands are considered, followed by detection and modification of the aliasing part in the preliminary output in order to increase the visual effect. By exploiting fundamental properties of images such as property of edge direction, different parts of the source image are considered separately in order to predict the vertical and horizontal details accurately, helping to consummate the whole framework in reconstructing the high-resolution image. Extensive tests of the proposed method show that both objective quality (PSNR) and subjective quality are obviously improved compared to several other state-of-the-art methods. And this work also leaved capacious space for further research, not only theoretical but also practical. Some of the related research applications based on this algorithm strategy are also briefly introduced

    Satellite image resolution enhancement using discrete wavelet transform and new edge-directed interpolation

    Get PDF
    An image resolution enhancement approach based on discrete wavelet transform (DWT) and new edge-directed interpolation (NEDI) for degraded satellite images by geometric distortion to correct the errors in image geometry and recover the edge details of directional high-frequency subbands is proposed. The observed image is decomposed into four frequency subbands through DWT, and then the three high-frequency subbands and the observed image are processed with NEDI. To better preserve the edges and remove potential noise in the estimated high-frequency subbands, an adaptive threshold is applied to process the estimated wavelet coefficients. Finally, the enhanced image is reconstructed by applying inverse DWT. Four criteria are introduced, aiming to better assess the overall performance of the proposed approach for different types of satellite images. A public satellite images data set is selected for the validation purpose. The visual and quantitative results show the superiority of the proposed approach over the conventional and state-of-the-art image resolution enhancement

    Locally Adaptive Wavelet-Based Image Interpolation

    Get PDF
    We describe a spatially adaptive algorithm for image interpolation. The algorithm uses a wavelet transform to extract information about sharp variations in the low-resolution image and then implicitly applies interpolation which adapts to the image local smoothness/singularity characteristics. The proposed algorithm yields images that are sharper compared to several other methods that we have considered in this paper. Better performance comes at the expense of higher complexity

    Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes

    Get PDF
    International audienceWe present a new method of magnification for textured images featuring scale invariance properties. This work is originally motivated by an application to astronomical images. One goal is to propose a method to quantitatively predict statistical and visual properties of images taken by a forthcoming higher resolution telescope from older images at lower resolution. This is done by performing a virtual super resolution using a family of scale invariant stochastic processes, namely compound Poisson cascades, and fractional integration. The procedure preserves the visual aspect as well as the statistical properties of the initial image. An augmentation of information is performed by locally adding random small scale details below the initial pixel size. This extrapolation procedure yields a potentially infinite number of magnified versions of an image. It allows for large magnification factors (virtually infinite) and is physically conservative: zooming out to the initial resolution yields the initial image back. The (virtually) super resolved images can be used to predict the quality of future observations as well as to develop and test compression or denoising techniques

    Wavelet-Based Enhancement Technique for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of color digital images based on wavelet transform domain are investigated in this dissertation research. In this research, a novel, fast and robust wavelet-based dynamic range compression and local contrast enhancement (WDRC) algorithm to improve the visibility of digital images captured under non-uniform lighting conditions has been developed. A wavelet transform is mainly used for dimensionality reduction such that a dynamic range compression with local contrast enhancement algorithm is applied only to the approximation coefficients which are obtained by low-pass filtering and down-sampling the original intensity image. The normalized approximation coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is realized by tuning the magnitude of the each coefficient with respect to surrounding coefficients. The transformed coefficients are then de-normalized to their original range. The detail coefficients are also modified to prevent edge deformation. The inverse wavelet transform is carried out resulting in a lower dynamic range and contrast enhanced intensity image. A color restoration process based on the relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some pathological scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for tackling the color constancy problem. The illuminant is modeled having an effect on the image histogram as a linear shift and adjust the image histogram to discount the illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of using a linear color restoration, a non-linear color restoration process employing the spectral context relationships of the original image is applied. The proposed technique solves the color constancy issue and the overall enhancement algorithm provides attractive results improving visibility even for scenes with near-zero visibility conditions. In this research, a new wavelet-based image interpolation technique that can be used for improving the visibility of tiny features in an image is presented. In wavelet domain interpolation techniques, the input image is usually treated as the low-pass filtered subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the unknown high-resolution image is produced by estimating the wavelet coefficients of the high-pass filtered subbands. The same approach is used to obtain an initial estimate of the high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients are estimated via feeding this initial estimate to an undecimated wavelet transform (UWT). Taking an inverse transform after replacing the approximation coefficients of the UWT with initially estimated HR image, results in the final interpolated image. Experimental results of the proposed algorithms proved their superiority over the state-of-the-art enhancement and interpolation techniques

    Image interpolation and denoising in discrete wavelet transform domain

    Full text link
    Traditionally, processing a compressed image requires decompression first. Following the related manipulations, the processed image is compressed again for storage. To reduce the computational complexity and processing time, manipulating images in the transform domain, which is possible, is an efficient solution; The uniform wavelet thresholding is one of the most widely used methods for image denoising in the Discrete Wavelet Transform (DWT) domain. This method, however, has the drawback of blurring the edges and the textures of an image after denoising. A new algorithm is proposed in this thesis for image denoising in the DWT domain with no blurring effect. This algorithm uses a suite of feature extraction and image segmentation techniques to construct filter masks for denoising. The novelty of the algorithm is that it directly extracts the edges and texture details of an image from the spatial information contained in the LL subband of DWT domain rather than detecting the edges across multiple scales. An added advantage of this method is the substantial reduction in computational complexity. Experimental results indicate that the new algorithm would yield higher quality images (both qualitatively and quantitatively) than the existing methods; In this thesis, new algorithm for image interpolation in the DWT domain is also discussed. Being different from other methods for interpolation, which focus on Haar wavelet, new interpolation algorithm also investigates other wavelets, such as Daubecuies and Bior. Experimental results indicate that the new algorithm is superior to the traditional methods by comparing the time complexity and quality of the processed image

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Detection of pathologies in retina digital images an empirical mode decomposition approach

    Get PDF
    Accurate automatic detection of pathologies in retina digital images offers a promising approach in clinicalapplications. This thesis employs the discrete wavelet transform (DWT) and empirical mode decomposition (EMD) to extract six statistical textural features from retina digital images. The statistical features are the mean, standard deviation, smoothness, third moment, uniformity, and entropy. The purpose is to classify normal and abnormal images. Five different pathologies are considered. They are Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates). Four classifiers are employed; including support vector machines (SVM), quadratic discriminant analysis (QDA), k-nearest neighbor algorithm (k-NN), and probabilistic neural networks (PNN). For each experiment, ten random folds are generated to perform cross-validation tests. In order to assess the performance of the classifiers, the average and standard deviation of the correct recognition rate, sensitivity and specificity are computed for each simulation. The experimental results highlight two main conclusions. First, they show the outstanding performance of EMD over DWT with all classifiers. Second, they demonstrate the superiority of the SVM classifier over QDA, k-NN, and PNN. Finally, principal component analysis (PCA) was employed to reduce the number of features in hope to improve the accuracy of classifiers. We find that there is no general and significant improvement of the performance, however. In sum, the EMD-SVM system provides a promising approach for the detection of pathologies in digital retina

    Novel methods in image halftoning

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and Institute of Engineering and Science, Bilkent Univ., 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 97-101Halftoning refers to the problem of rendering continuous-tone (contone) images on display and printing devices which are capable of reproducing only a limited number of colors. A new adaptive halftoning method using the adaptive QR- RLS algorithm is developed for error diffusion which is one of the halftoning techniques. Also, a diagonal scanning strategy to exploit the human visual system properties in processing the image is proposed. Simulation results on color images demonstrate the superior quality of the new method compared to the existing methods. Another problem studied in this thesis is inverse halftoning which is the problem of recovering a contone image from a given halftoned image. A novel inverse halftoning method is developed for restoring a contone image from the halftoned image. A set theoretic formulation is used where sets are defined using the prior information about the problem. A new space domain projection is introduced assuming the halftoning is performed ,with error diffusion, and the error diffusion filter kernel is known. The space domain, frequency domain, and space-scale domain projections are used alternately to obtain a feasible solution for the inverse halftoning problem which does not have a unique solution. Simulation results for both grayscale and color images give good results, and demonstrate the effectiveness of the proposed inverse halftoning method.Bozkurt, GözdeM.S

    Fractal image compression and the self-affinity assumption : a stochastic signal modelling perspective

    Get PDF
    Bibliography: p. 208-225.Fractal image compression is a comparatively new technique which has gained considerable attention in the popular technical press, and more recently in the research literature. The most significant advantages claimed are high reconstruction quality at low coding rates, rapid decoding, and "resolution independence" in the sense that an encoded image may be decoded at a higher resolution than the original. While many of the claims published in the popular technical press are clearly extravagant, it appears from the rapidly growing body of published research that fractal image compression is capable of performance comparable with that of other techniques enjoying the benefit of a considerably more robust theoretical foundation. . So called because of the similarities between the form of image representation and a mechanism widely used in generating deterministic fractal images, fractal compression represents an image by the parameters of a set of affine transforms on image blocks under which the image is approximately invariant. Although the conditions imposed on these transforms may be shown to be sufficient to guarantee that an approximation of the original image can be reconstructed, there is no obvious theoretical reason to expect this to represent an efficient representation for image coding purposes. The usual analogy with vector quantisation, in which each image is considered to be represented in terms of code vectors extracted from the image itself is instructive, but transforms the fundamental problem into one of understanding why this construction results in an efficient codebook. The signal property required for such a codebook to be effective, termed "self-affinity", is poorly understood. A stochastic signal model based examination of this property is the primary contribution of this dissertation. The most significant findings (subject to some important restrictions} are that "self-affinity" is not a natural consequence of common statistical assumptions but requires particular conditions which are inadequately characterised by second order statistics, and that "natural" images are only marginally "self-affine", to the extent that fractal image compression is effective, but not more so than comparable standard vector quantisation techniques
    • 

    corecore