45,062 research outputs found

    Fabrication and electrical transport properties of embedded graphite microwires in a diamond matrix

    Full text link
    Micrometer width and nanometer thick wires with different shapes were produced \approx 3~\upmum below the surface of a diamond crystal using a microbeam of He+^+ ions with 1.8~MeV energy. Initial samples are amorphous and after annealing at T≈1475T\approx 1475~K, the wires crystallized into a graphite-like structures, according to confocal Raman spectroscopy measurements. The electrical resistivity at room temperature is only one order of magnitude larger than the in-plane resistivity of highly oriented pyrolytic bulk graphite and shows a small resistivity ratio(ρ(2K)/ρ(315K)≈1.275\rho(2{\rm K})/\rho(315{\rm K}) \approx 1.275). A small negative magnetoresistance below T=200T=200~K was measured and can be well understood taking spin-dependent scattering processes into account. The used method provides the means to design and produce millimeter to micrometer sized conducting circuits with arbitrary shape embedded in a diamond matrix.Comment: 12 pages, 5 figures, to be published in Journal of Physics D: Applied Physics (Feb. 2017

    Damage investigation in CFRP composites using full-field measurement techniques: combination of digital image stereo-correlation, infrared thermography and X-ray tomography

    Get PDF
    The present work is devoted to damaging process in carbon–fiber reinforced laminated composites. An original experimental approach combining three optical measurement techniques is presented. Image stereo-correlation and infrared thermography, that respectively provide the kinematic and thermal fields on the surface of the composites, are used in live recording during axis and off-axis tensile tests. Special attention is paid to simultaneously conduct these two techniques while avoiding their respective influence. On the other hand, X-ray tomography allows a post-failure analysis of the degradation patterns within the laminates volume. All these techniques are non-destructive (without contact) and offer an interesting full-field investigation of the material response. Their combination allows a coupled analysis of different demonstrations of same degradation mechanisms. For instance, thermal events and densimetric fields show a random location of damage in the early stages of testing. The influence of the material initial anisotropy on damage growth, localization and failure mode can also be clearly put in evidence through various data. In addition to such characterization, this study illustrates at the same time the capabilities of the different full-field techniques and the damage features they can best capture respectively

    Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review

    Get PDF
    Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite

    Superconductivity in pure and electron doped MgB2: Transport properties and pressure effects

    Full text link
    The normal state and superconducting properties of MgB2 and Mg1-xAlxB2 are discussed based on structural, transport, and high pressure experiments. The positive Seebeck coefficient and its linear temperature dependence for Tc<T<160 K provide evidence that the low-temperature transport in MgB2 is due to hole-like metallic carriers. Structural and transport data show the important role of defects as indicated by the correlation of Tc, the residual resistance ratio, and the microstrain extracted from x-ray spectra. The decrease of Tc with hydrostatic pressure is well explained by the strong-coupling BCS theory. The large scatter of the pressure coefficients of Tc for different MgB2 samples, however, cannot be explained within this theory. We speculate that pressure may increase the defect density, particularly in samples with large initial defect concentration.Comment: Presented at NATO Advanced Research Workshop "New Trends in Superconductivity", Yalta (Ukraine) 16-20 September, 200
    • 

    corecore