123 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    The minimum cost D-geodiverse anycast routing with optimal selection of anycast nodes

    Get PDF
    Consider a geographical network with associated link costs. In anycast routing, network nodes are partitioned into two sets - the source nodes and the anycast (destination) nodes - and the traffic of each source node is routed towards the anycast node providing the minimum routing cost path. By considering a given geographical distance parameter D, we define an anycast routing solution as D-geodiverse when for each source node there are two routing paths, each one towards a different anycast node, such that the geographical distance between the two paths is at least D. Such a solution has the property that any disaster with a coverage diameter below D affecting one routing path (but without involving neither the source node nor its entire set of outgoing links) cannot affect the other path, enhancing in this way the network robustness to natural disasters. The selection of the anycast nodes has an impact both on the feasibility and cost of a D- geodiverse anycast routing solution. Therefore, for a desired number of anycast nodes R, we define the minimum cost D- geodiverse anycast problem (MCD-GAP) aiming to identify a set of R anycast nodes that obtain a minimum cost routing solution. The problem is defined based on integer linear programming and is extended to consider the existence of vulnerability regions in the network, i.e., by imposing the geographical distance D only between network elements belonging to the same region. We present computational results showing the tradeoff between D and R in the optimal solutions obtained with and without vulnerability regions.This paper is based upon work from COST Action CA15127 ("Resilient communication services protecting end user applications from disaster-based failures ‒ RECODIS") supported by COST Association. The work was financially supported by FCT, Portugal, under the projects CENTRO- 01-0145-FEDER-029312 and UID/EEA/50008/2013 and through the postdoc grant SFRH/BPD/ 111503/2015.publishe

    Scalable ReliableControllerPlacementinSoftwareDefinedNetworking

    Get PDF
    Software Defined Networking (SDN) is a new networking paradigm that facilitates a centralized system of computer networks by decoupling the control and data plane from each other, where a controller maintains the management of a global view of the network. SDN architectures can provide programmatic interfaces in communication networks that significantly simplify network management. Hence, the controllability and manageability of a network can be improved. On the one hand, the placement of controllers can significantly impact network performance in terms of controller responsiveness. On the other hand, SDN offers the ability to have controllers distributed over the network to solve the single point of failure problem at the control plane, increasing scalability and flexibility. However, there are some inevitable problems for such networks, especially for controller-related problems. For instance, scalability, reliability, and controller availability are some of the hottest aspects of SDN. More precisely, failure of the controllers themselves may lead to the impact of these aspects and the collapse of the network performance. Despite the issues mentioned above, the controller placement challenges must be appropriately addressed to take advantage of the SDN. The connections between the controller (control plane) and the switches (data plane) in SDN are established by either an in-band or an out-of-band control mechanism. New challenges still arise regardin the connection availability and provide more protection for the connection between the data and control planes. A disconnection between the two planes could result in performance degradation. Although the SDN offers the advantage of an environment of multiple distributed controllers, yet the intercommunication factor between these controllers is still a key challenge. This thesis investigates the issues mentioned above and organizes them into four stages. First, dealing with the controller placement problem as the most crucial concern in SDN, via exploiting the independent dominating set approach to ensure a distribution of controllers with lowest response times. We propose a new node degree-based algorithm named High Degree with Independent Dominating Set (HDIDS) for the controller placement problem in the SDN networks. HDIDS is composed of two phases to deal with controller placement: (1) determining candidate controller instances by selecting those nodes with the highest degree; and (2) partitioning the network into multiple domains, one controller per domain. To further improve network performance, reliability, and survivability, one solution is to deploy backup controllers to satisfy the quality of service requirements. In this regard, as a second step, we enhance the controller placement approach by designing a reliable and survivable controller placement strategy. This strategy relies on the efficient deployment of backup controllers by constructing virtual backup domains set(s) to ensure the durability and resilience of network control management. The approach design is called a Survivable Backup Controller Placement approach. Furthermore, to achieve reliable control traffic between data and control planes in an in-band control network, as a third stage, we design and implement an In-band Control Protection Module that finds a set of ideal paths for the control channel under the failure conditions. The proposed protection mechanism protects as much control traffic as possible. Finally, we present a practical approach for the controller placement problem in software defined networks aiming to minimize the inter-controller communication delay time and the delay time between controller and switches. The principal concept employed in this approach is the Connected Dominating Set. Further, we present an algorithm using the Minimum Connected Dominating Set, which minimizes the delay time between the distributed SDN controllers

    A study of the applicability of software-defined networking in industrial networks

    Get PDF
    173 p.Las redes industriales interconectan sensores y actuadores para llevar a cabo funciones de monitorización, control y protección en diferentes entornos, tales como sistemas de transporte o sistemas de automatización industrial. Estos sistemas ciberfísicos generalmente están soportados por múltiples redes de datos, ya sean cableadas o inalámbricas, a las cuales demandan nuevas prestaciones, de forma que el control y gestión de tales redes deben estar acoplados a las condiciones del propio sistema industrial. De este modo, aparecen requisitos relacionados con la flexibilidad, mantenibilidad y adaptabilidad, al mismo tiempo que las restricciones de calidad de servicio no se vean afectadas. Sin embargo, las estrategias de control de red tradicionales generalmente no se adaptan eficientemente a entornos cada vez más dinámicos y heterogéneos.Tras definir un conjunto de requerimientos de red y analizar las limitaciones de las soluciones actuales, se deduce que un control provisto independientemente de los propios dispositivos de red añadiría flexibilidad a dichas redes. Por consiguiente, la presente tesis explora la aplicabilidad de las redes definidas por software (Software-Defined Networking, SDN) en sistemas de automatización industrial. Para llevar a cabo este enfoque, se ha tomado como caso de estudio las redes de automatización basadas en el estándar IEC 61850, el cual es ampliamente usado en el diseño de las redes de comunicaciones en sistemas de distribución de energía, tales como las subestaciones eléctricas. El estándar IEC 61850 define diferentes servicios y protocolos con altos requisitos en terminos de latencia y disponibilidad de la red, los cuales han de ser satisfechos mediante técnicas de ingeniería de tráfico. Como resultado, aprovechando la flexibilidad y programabilidad ofrecidas por las redes definidas por software, en esta tesis se propone una arquitectura de control basada en el protocolo OpenFlow que, incluyendo tecnologías de gestión y monitorización de red, permite establecer políticas de tráfico acorde a su prioridad y al estado de la red.Además, las subestaciones eléctricas son un ejemplo representativo de infraestructura crítica, que son aquellas en las que un fallo puede resultar en graves pérdidas económicas, daños físicos y materiales. De esta forma, tales sistemas deben ser extremadamente seguros y robustos, por lo que es conveniente la implementación de topologías redundantes que ofrezcan un tiempo de reacción ante fallos mínimo. Con tal objetivo, el estándar IEC 62439-3 define los protocolos Parallel Redundancy Protocol (PRP) y High-availability Seamless Redundancy (HSR), los cuales garantizan un tiempo de recuperación nulo en caso de fallo mediante la redundancia activa de datos en redes Ethernet. Sin embargo, la gestión de redes basadas en PRP y HSR es estática e inflexible, lo que, añadido a la reducción de ancho de banda debida la duplicación de datos, hace difícil un control eficiente de los recursos disponibles. En dicho sentido, esta tesis propone control de la redundancia basado en el paradigma SDN para un aprovechamiento eficiente de topologías malladas, al mismo tiempo que se garantiza la disponibilidad de las aplicaciones de control y monitorización. En particular, se discute cómo el protocolo OpenFlow permite a un controlador externo configurar múltiples caminos redundantes entre dispositivos con varias interfaces de red, así como en entornos inalámbricos. De esta forma, los servicios críticos pueden protegerse en situaciones de interferencia y movilidad.La evaluación de la idoneidad de las soluciones propuestas ha sido llevada a cabo, principalmente, mediante la emulación de diferentes topologías y tipos de tráfico. Igualmente, se ha estudiado analítica y experimentalmente cómo afecta a la latencia el poder reducir el número de saltos en las comunicaciones con respecto al uso de un árbol de expansión, así como balancear la carga en una red de nivel 2. Además, se ha realizado un análisis de la mejora de la eficiencia en el uso de los recursos de red y la robustez alcanzada con la combinación de los protocolos PRP y HSR con un control llevado a cabo mediante OpenFlow. Estos resultados muestran que el modelo SDN podría mejorar significativamente las prestaciones de una red industrial de misión crítica

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work
    corecore