89 research outputs found

    Resilient internetwork routing over heterogeneous mobile military networks

    Get PDF
    Mobile networks in the military tactical domain, include a range of radio networks with very diverse characteristics and which may be employed differently from operation to operation. When interconnecting networks with dissimilar characteristics (e.g. capacity, range, mobility) a difficult trade-off is to fully utilize the diverse network characteristics while minimizing the cost. To support the ever increasing requirements for future operations it is necessary to provide tools to quickly alter the rule-set during an ongoing operation, due to a change in operation and/or to support different needs. Our contribution is a routing protocol which targets these challenges. We propose an architecture to connect networks with different characteristics. One key point is that low capacity links/networks segments can be included in the heterogeneous network, these segments are protected from overload by controlling where and when signaling/data traffic is sent. The protocol supports traffic policing, including resource reservation. The other key point is the ability to quickly alter the network policy (rules-set) including QoS support during an operation or from operation to operation.author postprin

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Cognitive Communications and Networking Technology Infusion Study Report

    Get PDF
    As the envisioned next-generation SCaN Network transitions into an end-to-end system of systems with new enabling capabilities, it is anticipated that the introduction of machine learning, artificial intelligence, and other cognitive strategies into the network infrastructure will result in increased mission science return, improved resource efficiencies, and increased autonomy and reliability. This enhanced set of cognitive capabilities will be implemented via a space cloud concept to achieve a service-oriented architecture with distributed cognition, de-centralized routing, and shared, on-orbit data processing. The enabling cognitive communications and networking capabilities that may facilitate the desired network enhancements are identified in this document, and the associated enablers of these capabilities, such as technologies and standards, are described in detail

    TOWER: Topology Optimization for netWork Enhanced Resilience

    Get PDF
    7th International Conference on Data Communication Networking - DCNET 2016 , 26/07/2016-28/07/2016, Lisboa, PortugalNowadays society is more and more dependent on critical infrastructures. Critical network infrastructures (CNI) are communication networks whose disruption can create a severe impact on other systems including critical infrastructures. In this work, we propose TOWER, a framework for the provision of adequate strategies to optimize service provision and system resilience in CNIs. The goal of TOWER is being able to compute new network topologies for CNIs under the event of malicious attacks. For doing this, TOWER takes into account a risk analysis of the CNI, the results from a cyber-physical IDS and a multilayer model of the network, for taking into account all the existing dependences. TOWER analyses the network structure in order to determine the best strategy for obtaining a network topology, taking into account the existing dependences and the potential conflicting interests when not all requirements can be met. Finally, we present some lines for further development of TOWER.European Commissio

    Models and Protocols for Resource Optimization in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are built on a mix of fixed and mobile nodes interconnected via wireless links to form a multihop ad hoc network. An emerging application area for wireless mesh networks is their evolution into a converged infrastructure used to share and extend, to mobile users, the wireless Internet connectivity of sparsely deployed fixed lines with heterogeneous capacity, ranging from ISP-owned broadband links to subscriber owned low-speed connections. In this thesis we address different key research issues for this networking scenario. First, we propose an analytical predictive tool, developing a queuing network model capable of predicting the network capacity and we use it in a load aware routing protocol in order to provide, to the end users, a quality of service based on the throughput. We then extend the queuing network model and introduce a multi-class queuing network model to predict analytically the average end-to-end packet delay of the traffic flows among the mobile end users and the Internet. The analytical models are validated against simulation. Second, we propose an address auto-configuration solution to extend the coverage of a wireless mesh network by interconnecting it to a mobile ad hoc network in a transparent way for the infrastructure network (i.e., the legacy Internet interconnected to the wireless mesh network). Third, we implement two real testbed prototypes of the proposed solutions as a proof-of-concept, both for the load aware routing protocol and the auto-configuration protocol. Finally we discuss the issues related to the adoption of ad hoc networking technologies to address the fragility of our communication infrastructure and to build the next generation of dependable, secure and rapidly deployable communications infrastructures

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Implementation of Middleware for Internet of Things in Asset Tracking Applications: In-lining Approach

    Get PDF
    ThesisInternet of Things (IoT) is a concept that involves giving objects a digital identity and limited artificial intelligence, which helps the objects to be interactive, process data, make decisions, communicate and react to events virtually with minimum human intervention. IoT is intensified by advancements in hardware and software engineering and promises to close the gap that exists between the physical and digital worlds. IoT is paving ways to address complex phenomena, through designing and implementation of intelligent systems that can monitor phenomena, perform real-time data interpretation, react to events, and swiftly communicate observations. The primary goal of IoT is ubiquitous computing using wireless sensors and communication protocols such as Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee and General Packet Radio Service (GPRS). Insecurity, of assets and lives, is a problem around the world. One application area of IoT is tracking and monitoring; it could therefore be used to solve asset insecurity. A preliminary investigation revealed that security systems in place at Central University of Technology, Free State (CUT) are disjointed; they do not instantaneously and intelligently conscientize security personnel about security breaches using real time messages. As a result, many assets have been stolen, particularly laptops. The main objective of this research was to prove that a real-life application built over a generic IoT architecture that innovatively and intelligently integrates: (1) wireless sensors; (2) radio frequency identification (RFID) tags and readers; (3) fingerprint readers; and (4) mobile phones, can be used to dispel laptop theft. To achieve this, the researcher developed a system, using the heterogeneous devices mentioned above and a middleware that harnessed their unique capabilities to bring out the full potential of IoT in intelligently curbing laptop theft. The resulting system has the ability to: (1) monitor the presence of a laptop using RFID reader that pro-actively interrogates a passive tag attached to the laptop; (2) detect unauthorized removal of a laptop under monitoring; (3) instantly communicate security violations via cell phones; and (4) use Windows location sensors to track the position of a laptop using Googlemaps. The system also manages administrative tasks such as laptop registration, assignment and withdrawal which used to be handled manually. Experiments conducted using the resulting system prototype proved the hypothesis outlined for this research
    corecore