21,996 research outputs found

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    DISCO: Distributed Multi-domain SDN Controllers

    Full text link
    Modern multi-domain networks now span over datacenter networks, enterprise networks, customer sites and mobile entities. Such networks are critical and, thus, must be resilient, scalable and easily extensible. The emergence of Software-Defined Networking (SDN) protocols, which enables to decouple the data plane from the control plane and dynamically program the network, opens up new ways to architect such networks. In this paper, we propose DISCO, an open and extensible DIstributed SDN COntrol plane able to cope with the distributed and heterogeneous nature of modern overlay networks and wide area networks. DISCO controllers manage their own network domain and communicate with each others to provide end-to-end network services. This communication is based on a unique lightweight and highly manageable control channel used by agents to self-adaptively share aggregated network-wide information. We implemented DISCO on top of the Floodlight OpenFlow controller and the AMQP protocol. We demonstrated how DISCO's control plane dynamically adapts to heterogeneous network topologies while being resilient enough to survive to disruptions and attacks and providing classic functionalities such as end-point migration and network-wide traffic engineering. The experimentation results we present are organized around three use cases: inter-domain topology disruption, end-to-end priority service request and virtual machine migration

    Container network functions: bringing NFV to the network edge

    Get PDF
    In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers are exploiting virtualization over their network by implementing network services in virtual machines, decoupled from legacy hardware accelerated appliances. This effort, known as NFV, reduces OPEX and provides new business opportunities. At the same time, next generation mobile, enterprise, and IoT networks are introducing the concept of computing capabilities being pushed at the network edge, in close proximity of the users. However, the heavy footprint of today's NFV platforms prevents them from operating at the network edge. In this article, we identify the opportunities of virtualization at the network edge and present Glasgow Network Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight container VNFs, saving core network utilization and providing lower latency. Finally, we demonstrate three useful examples of the platform: IoT DDoS remediation, on-demand troubleshooting for telco networks, and supporting roaming of network functions

    Overlay networks for smart grids

    Get PDF

    Service Chain (SC) Mapping with Multiple SC Instances in a Wide Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is usually referred as SC mapping. In a Wide Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC, one single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with SC mapping with multiple SC instances to minimize network resource consumption. Exact mathematical modeling of this problem results in a quadratic formulation. We propose a two-phase column-generation-based model and solution in order to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to solution very close to the minimum bandwidth consumption

    Disaster-Resilient Control Plane Design and Mapping in Software-Defined Networks

    Full text link
    Communication networks, such as core optical networks, heavily depend on their physical infrastructure, and hence they are vulnerable to man-made disasters, such as Electromagnetic Pulse (EMP) or Weapons of Mass Destruction (WMD) attacks, as well as to natural disasters. Large-scale disasters may cause huge data loss and connectivity disruption in these networks. As our dependence on network services increases, the need for novel survivability methods to mitigate the effects of disasters on communication networks becomes a major concern. Software-Defined Networking (SDN), by centralizing control logic and separating it from physical equipment, facilitates network programmability and opens up new ways to design disaster-resilient networks. On the other hand, to fully exploit the potential of SDN, along with data-plane survivability, we also need to design the control plane to be resilient enough to survive network failures caused by disasters. Several distributed SDN controller architectures have been proposed to mitigate the risks of overload and failure, but they are optimized for limited faults without addressing the extent of large-scale disaster failures. For disaster resiliency of the control plane, we propose to design it as a virtual network, which can be solved using Virtual Network Mapping techniques. We select appropriate mapping of the controllers over the physical network such that the connectivity among the controllers (controller-to-controller) and between the switches to the controllers (switch-to-controllers) is not compromised by physical infrastructure failures caused by disasters. We formally model this disaster-aware control-plane design and mapping problem, and demonstrate a significant reduction in the disruption of controller-to-controller and switch-to-controller communication channels using our approach.Comment: 6 page
    • …
    corecore