20,871 research outputs found

    Robust and Resilient Finite-Time Control of a Class of Discrete-Time Nonlinear Systems

    Get PDF
    In this paper, we address the finite-time state-feedback stabilization of a class of discrete-time nonlinear systems with conic type nonlinearities, bounded feedback control gain perturbations, and additive disturbances. Sufficient conditions for the existence of a robust and resilient linear statefeedback controller for this class of systems are derived. Then, using linear matrix inequality techniques, a solution for the controller gain is obtained. The developed controller is robust for all unknown nonlinearities lying in a hyper-sphere and all admissible disturbances. Moreover, it is resilient against any bounded perturbations that may alter the controller’s gain by at most a prescribed amount. We conclude the paper with a numerical example showcasing the applicability of the main result

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Resilient Observer Design for Discrete-Time Nonlinear Systems with General Criteria

    Get PDF
    A class of discrete-time nonlinear system and measurement equations having incrementally conic nonlinearities and finite energy disturbances is considered. A linear matrix inequality based resilient observer design approach is presented to guarantee the satisfaction of a variety of performance criteria ranging from simple estimation error boundedness to dissipativity in the presence of bounded perturbations on the gain. Some simulation examples are included to illustrate the proposed design methodology

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Robust and Resilient Finite-time Bounded Control of Discrete-time Uncertain Nonlinear Systems

    Get PDF
    Finite-time state-feedback stabilization is addressed for a class of discrete-time nonlinear systems with conic-type nonlinearities, bounded feedback control gain perturbations, and additive disturbances. First, conditions for the existence of a robust and resilient linear state-feedback controller for this class of systems are derived. Then, using linear matrix inequality techniques, a solution for the controller gain and the maximum allowable bound on the gain perturbation is obtained. The developed controller is robust for all unknown nonlinearities lying in a known hypersphere with an uncertain center and all admissible disturbances. Moreover, it is resilient against any bounded perturbations that may alter the controller’s gain by at most a prescribed amount. The paper is concluded with a numerical example showcasing the applicability of the main result

    Rapid Recovery for Systems with Scarce Faults

    Full text link
    Our goal is to achieve a high degree of fault tolerance through the control of a safety critical systems. This reduces to solving a game between a malicious environment that injects failures and a controller who tries to establish a correct behavior. We suggest a new control objective for such systems that offers a better balance between complexity and precision: we seek systems that are k-resilient. In order to be k-resilient, a system needs to be able to rapidly recover from a small number, up to k, of local faults infinitely many times, provided that blocks of up to k faults are separated by short recovery periods in which no fault occurs. k-resilience is a simple but powerful abstraction from the precise distribution of local faults, but much more refined than the traditional objective to maximize the number of local faults. We argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We show that the computational complexity of constructing optimal control with respect to resilience is low and demonstrate the feasibility through an implementation and experimental results.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Resilient Control under Denial-of-Service

    Get PDF
    We investigate resilient control strategies for linear systems under Denial-of-Service (DoS) attacks. By DoS attacks we mean interruptions of communication on measurement (sensor-to-controller) and/or control (controller-to-actuator) channels carried out by an intelligent adversary. We characterize the duration of these interruptions under which stability of the closed-loop system is preserved. The resilient nature of the control descends from its ability to adapt the sampling rate to the occurrence of the DoS.Comment: 10 pages, abridged version submitte
    • …
    corecore