175 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Aerial MANETs: Developing a Resilient and Efficient Platform for Search and Rescue Applications

    Get PDF
    Abstract-The ability of first-responders to react to the aftermath of natural disasters depends heavily on receiving accurate, real-time data about the structures that may have been affected. Because transportation infrastructure may be unusable, aerial assessments are the gold standard by which such assessments are performed. The advent of mobile ad-hoc networks (MANETs) and autonomous aircraft represents a unique opportunity to allow for rapid response, while minimizing the cost of deployment and increasing reliability and operator safety. This paper describes the key challenges to implement fault-tolerant and efficient deployments of collaborative autonomous aircraft to increase operational reliability and performance when performing aerial sensing and assessment. Some challenges are affected by mobility, such as wireless communication, group navigation, and data collection. Security also represents a challenge during the operation of the MANET. We consider the effects of limited resources (e.g., real-time processing power, battery packs) available on the aircraft. By understanding both the application context and the resource availability, networked aircraft can reorganize to ensure resiliency for the mission if a resource failure occurs within the network

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    An overview of emergency communication networks

    Get PDF
    In recent years, major natural disasters and public safety accidents have frequently occurred worldwide. In order to deal with various disasters and accidents using rapidly deployable, reliable, efficient, and stable emergency communication networks, all countries in the world are strengthening and improving emergency communication network construction and related technology research. Motivated by these situations, in this paper, we provide a state-of-the-art survey of the current situation and development of emergency communication networks. In this detailed investigation, our primary focus is the extensive discussion of emergency communication network technology, including satellite networks, ad hoc networks, cellular networks, and wireless private networks. Then, we explore and analyze the networks currently applied in emergency rescue, such as the 370M narrowband private network, broadband cluster network, and 5G constellation plan. We propose a broadband-narrowband integrated emergency communication network to provide an effective solution for visual dispatch of emergency rescue services. The main findings derived from the comprehensive survey on the emergency communication network are then summarized, and possible research challenges are noted. Lastly, we complete this survey by shedding new light on future directions for the emergency communication network. In the future, the emergency network will develop in the direction of intelligence, integration, popularization, and lower cost, and space-air-ground-sea integrated networks. This survey provides a reference basis for the construction of networks to mitigate major natural disasters and public safety accidents

    Constructing Dynamic Ad-hoc Emergency Networks using Software-Defined Wireless Mesh Networks

    Get PDF
    Natural disasters and other emergency situations have the potential to destroy a whole network infrastructure needed for communication critical to emergency rescue, evacuation, and initial rehabilitation. Hence, the research community has begun to focus attention on rapid network reconstruction in such emergencies; however, research has tried to create or improve emergency response systems using traditional radio and satellite communications, which face high operation costs and frequent disruptions. This thesis proposes a centralized monitoring and control system to reconstruct ad-hoc networks in emergencies by using software-defined wireless mesh networks (SDWMN). The proposed framework utilizes wireless mesh networks and software-defined networking to provide real-time network monitoring services to restore Internet access in a targeted disaster zone. It dispatches mobile devices including unmanned aerial vehicles and self-driving cars to the most efficient location aggregation to recover impaired network connections by using a new GPS position finder (GPS-PF) algorithm. The algorithm is based on density-based spatial clustering that calculates the best position to deploy one of the mobile devices. The proposed system is evaluated using the common open research emulator to demonstrate its efficiency and high accessibility in emergency situations. The results obtained from the evaluation show that the performance of the emergency communication system is improved considerably with the incorporation of the framework

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications
    • …
    corecore