1,902 research outputs found

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Running user-provided virtual machines in batch-oriented computing clusters

    Get PDF
    The use of virtualization in HPC clusters can provide rich software environments, application isolation and efficient workload management mechanisms, but system-level virtualization introduces a software layer on the computing nodes that reduces performance and inhibits the direct use of hardware devices. We propose an unobtrusive user-level platform that allows the execution of virtual machines inside batch jobs without limiting the computing cluster’s ability to execute the most demanding applications. A per-user platform uses a static mode in which the VMs run entirely using the resources of a single batch job and a dynamic mode in which the VMs navigate at runtime between the continuously allocated jobs node time-slots. A dynamic mode is introduced to build complex scenarios with several VMs for personalized HPC environments or persistent services such as databases or web services based applications. Fault-tolerant system agents, integrated using group communication primitives, control the system and execute user commands and automatic scheduling decisions made by an optional monitoring function. The performance of compute intensive applications running on our system suffers negligible overhead compared to the native configuration. The performance of distributed applications is dependent on their communication patterns as the user-mode network overlay introduces a relevant communication overhead.FC
    • …
    corecore