3,650 research outputs found

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    Special section Industry 4.0: Challenges for the future in manufacturing

    Get PDF
    International audienceThe sensing enterprise is a digital business innovation concept making Cyber-Physical Systems, service-oriented architectures and advanced human-computer interactions converge, supporting a more agile, flexible, and proactive management of unexpected events in today’s global value networks. In essence, it concerns the adoption of future Internet technologies in virtual enterprises. Translating this concept to a general approach to smart systems (smart manufacturing, smart cities, smart logistics, etc.), requires new capabilities by next-generation information systems to perform sensing, modelling, and interpretation of “any” signal from the real world, thus providing the systems with higher flexibility and possibilities for reconfiguration (Panetto et al. 2016). Intuitively, a sensing system requires resources and machineries to be constantly monitored, configured, and easily controlled by human operators. All these functions, and much more indeed, are now implemented by the so-called (Industrial) Internet of Things or Cyber-Physical Systems. With the advent of the new cyber-physical system design paradigm, the number and diversity of systems that need to work together in the future enterprises have significantly increased (Weichhart et al. 2016). This trend highlights the need to shift from the classic central control of systems, towards systems interoperability as a capability to control, sense, and perceive distributed and heterogeneous systems and their environments, as well as to purposefully and socially act upon their perceptions. Such a shift could have important consequences on the future architecture design of the control of these systems. The emergence of cloud-based technologies will also have a significant impact on the design and implementation of cyber-physical systems; using such novel technologies, collaborative engineering practises will increase globally, thus enabling a new generation of small-scale industrial organizations to function in an information-centric manner and enabling industry 4.0 transformations (Cimini, et al, 2017). The potential of such technologies in fostering a leaner and more agile approach towards engineering is very high. Engineers and engineering organizations no longer have to be restricted to the availability of advanced processing capabilities, as they can adopt a ‘pay as you go’ approach, which will enable them to access and use software resources for engineering activities from any remote location in the world

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Towards decentralised job shop scheduling as a web service

    Get PDF
    This paper aims to investigate the fundamental requirements for a cloud-based scheduling service for manufacturing, notably manufacturer priority to scheduling service, resolution of schedule conflict, and error-proof data entry. A flow chart of an inference-based system for manufacturing scheduling is proposed and a prototype was designed using semantic web technologies. An adapted version of the Muth and Thompson 10 × 10 scheduling problem (MT10) was used as a case study and two manufacturing companies represented our use cases. Using Microsoft Project, levelled manufacturer operation plans were generated. Semantic rules were proposed for constraints calculation, scheduling and verification. Pellet semantic reasoner was used to apply those rules onto the case study. The results include two main findings. First, our system effectively detected conflicts when subjected to four types of disturbances. Secondly, suggestions of conflict resolutions were effective when implemented albeit they were not efficient. Consequently, our two hypotheses were accepted which gave merit for future works intended to develop scheduling as a web service. Future works will include three phases: (1) migration of our system to a graph database server, (2) a multi-agent system to automate conflict resolution and data entry, and (3) an optimisation mechanism for manufacturer prioritisation to scheduling services

    Semantic data integration for supply chain management: with a specific focus on applications in the semiconductor industry

    Get PDF
    Supply Chain Management (SCM) is essential to monitor, control, and enhance the performance of SCs. Increasing globalization and diversity of Supply Chains (SC)s lead to complex SC structures, limited visibility among SC partners, and challenging collaboration caused by dispersed data silos. Digitalization is responsible for driving and transforming SCs of fundamental sectors such as the semiconductor industry. This is further accelerated due to the inevitable role that semiconductor products play in electronics, IoT, and security systems. Semiconductor SCM is unique as the SC operations exhibit special features, e.g., long production lead times and short product life. Hence, systematic SCM is required to establish information exchange, overcome inefficiency resulting from incompatibility, and adapt to industry-specific challenges. The Semantic Web is designed for linking data and establishing information exchange. Semantic models provide high-level descriptions of the domain that enable interoperability. Semantic data integration consolidates the heterogeneous data into meaningful and valuable information. The main goal of this thesis is to investigate Semantic Web Technologies (SWT) for SCM with a specific focus on applications in the semiconductor industry. As part of SCM, End-to-End SC modeling ensures visibility of SC partners and flows. Existing models are limited in the way they represent operational SC relationships beyond one-to-one structures. The scarcity of empirical data from multiple SC partners hinders the analysis of the impact of supply network partners on each other and the benchmarking of the overall SC performance. In our work, we investigate (i) how semantic models can be used to standardize and benchmark SCs. Moreover, in a volatile and unpredictable environment, SC experts require methodical and efficient approaches to integrate various data sources for informed decision-making regarding SC behavior. Thus, this work addresses (ii) how semantic data integration can help make SCs more efficient and resilient. Moreover, to secure a good position in a competitive market, semiconductor SCs strive to implement operational strategies to control demand variation, i.e., bullwhip, while maintaining sustainable relationships with customers. We examine (iii) how we can apply semantic technologies to specifically support semiconductor SCs. In this thesis, we provide semantic models that integrate, in a standardized way, SC processes, structure, and flows, ensuring both an elaborate understanding of the holistic SCs and including granular operational details. We demonstrate that these models enable the instantiation of a synthetic SC for benchmarking. We contribute with semantic data integration applications to enable interoperability and make SCs more efficient and resilient. Moreover, we leverage ontologies and KGs to implement customer-oriented bullwhip-taming strategies. We create semantic-based approaches intertwined with Artificial Intelligence (AI) algorithms to address semiconductor industry specifics and ensure operational excellence. The results prove that relying on semantic technologies contributes to achieving rigorous and systematic SCM. We deem that better standardization, simulation, benchmarking, and analysis, as elaborated in the contributions, will help master more complex SC scenarios. SCs stakeholders can increasingly understand the domain and thus are better equipped with effective control strategies to restrain disruption accelerators, such as the bullwhip effect. In essence, the proposed Sematic Web Technology-based strategies unlock the potential to increase the efficiency, resilience, and operational excellence of supply networks and the semiconductor SC in particular

    Blockchain Technology for Viable Circular Digital Supply Chains: An Integrated Approach for Evaluating the Implementation Barriers

    Get PDF
    Blockchain technology (BT) is creating a new standard for all business operations. It can assist businesses in handling the complexity of circular digital supply chain management. Despite this optimistic view, several barriers hinder its implementation. In this regard, this study contributes to Industry 4.0, Circular Economy, the viability with a critical emphasis on its potential ramifications and influence on the future agenda while using BT technology in supply chain (SC). In addition, the research reduces the knowledge gap by investigating and ranking the key barriers to the deployment of BT in viable circular digital supply chains (VCDSCs) and studies their interdependencies and causal relationships. The barriers to BT adoption in VCDSC are identified through a thorough literature review and considering viability performance. These barriers are then classified using the AHP method. DEMATEL is then employed to examine the cause/effect, correlation, and connection among the 14 barriers selected barriers from the AHP classification to estimate each barrier's overall degree of impact over the others. This paper identifies and analyses the BT adoption barriers in VCDSC as well as examines how the key barriers interact. As a result, according to the AHP/DEMATEL method, the most prominent influencing barriers to the BT implementation in VCDSC are “Data transparency”, “Market competition”, “Missing infrastructure”, “Lack of standardization”, “Complex protocol”, “Lack of industry involvement”, “Financial constraints”, “Missing infrastructure”, “Data transparency” and “Interoperability”. The outcomes offer a potential path for identifying important barriers as well as insight into the implementation of BT in SC while integrating different capabilities such as viability, sustainability, and circular economy principles. Managers and researchers will benefit from this research by gaining an understanding of the challenges that must be prioritized and examined for BT to be implemented successfully in VCDSC. The use and implementation of Blockchain-enabled VCDSC continue to face challenges despite an increase in relevant practice and research. Despite the benefits of blockchain technology, managers struggle to apply such technology in the context of their company. In this respect, this paper uses an integrated AHP-DEMATEL for categorizing the BT barriers as well as the interrelationship between them. In this respect, this paper presents a The BT barriers studied are those related to the use of BT in SC while integrating different paradigms such as viability, digitalization, and circular economy. While many studies look at the barriers to BT adoption, none of them has ever included the viable capability, which means the ability to "react agilely to positive changes, be resilient to absorb negative events and re-cover after disruptions and survive at long-term periods". The study concludes with insightful comments based on the findings and suggestions for eradicating those obstacles and their associated effects

    High-Tech Urban Agriculture in Amsterdam : An Actor Network Analysis

    Get PDF
    The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social\u2013technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processe

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    Circular Production and Maintenance of Automotive Parts:An Internet of Things (IoT) Data Framework and Practice Review

    Get PDF
    The adoption of the Circular Economy paradigm by industry leads to increased responsibility of manufacturing to ensure a holistic awareness of the environmental impact of its operations. In mitigating negative effects in the environment, current maintenance practice must be considered for its potential contribution to a more sustainable lifecycle for the manufacturing operation, its products and related services. Focusing on the matching of digital technologies to maintenance practice in the automotive sector, this paper outlines a framework for organisations pursuing the integration of environmentally aware solutions in their production systems. This research sets out an agenda and framework for digital maintenance practice within the Circular Economy and the utilisation of Industry 4.0 technologies for this purpose
    • 

    corecore