137 research outputs found

    An overlay architecture for throughput optimal multipath routing

    Get PDF
    Legacy networks are often designed to operate with simple single-path routing, like shortest-path, which is known to be throughput suboptimal. On the other hand, previously proposed throughput optimal policies (i.e., backpressure) require every device in the network to make dynamic routing decisions. In this work, we study an overlay architecture for dynamic routing such that only a subset of devices (overlay nodes) need to make dynamic routing decisions. We determine the essential collection of nodes that must bifurcate traffic for achieving the maximum multicommodity network throughput. We apply our optimal node placement algorithm to several graphs and the results show that a small fraction of overlay nodes is sufficient for achieving maximum throughput. Finally, we propose a heuristic policy (OBP), which dynamically controls traffic bifurcations at overlay nodes. In all studied simulation scenarios, OBP not only achieves full throughput, but also reduces delay in comparison to the throughput optimal backpressure routing.United States. Air Force (Contract FA8721-05-C-0002)National Science Foundation (U.S.) (Grant CNS-0915988)United States. Office of Naval Research (Grant N00014-12-1-0064)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238)European Social Fund (WiNC Project of the Action:Supporting Postdoctoral Researchers

    Congestion Minimization for Multipath Routing via Multiroute Flows

    Get PDF
    Congestion minimization is a well-known routing problem for which there is an O(log n/loglog n)-approximation via randomized rounding due to Raghavan and Thompson. Srinivasan formally introduced the low-congestion multi-path routing problem as a generalization of the (single-path) congestion minimization problem. The goal is to route multiple disjoint paths for each pair, for the sake of fault tolerance. Srinivasan developed a dependent randomized scheme for a special case of the multi-path problem when the input consists of a given set of disjoint paths for each pair and the goal is to select a given subset of them. Subsequently Doerr gave a different dependentrounding scheme and derandomization. Doerr et al. considered the problem where the paths have to be chosen, and applied the dependent rounding technique and evaluated it experimentally. However, their algorithm does not maintain the required disjointness property without which the problem easily reduces to the standard congestion minimization problem. In this note we show a simple algorithm that solves the problem correctly without the need for dependent rounding --- standard independent rounding suffices. This is made possible via the notion of multiroute flows originally suggested by Kishimoto et al. One advantage of the simpler rounding is an improved bound on the congestion when the path lengths are short

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    Scalable and Efficient Multipath Routing: Complexity and Algorithms

    Get PDF
    A fundamental unsolved challenge in multipath routing is to provide disjoint end-to-end paths, each one satisfying certain operational goals (e.g., shortest possible), without overwhelming the data plane with prohibitive amount of forwarding state. In this paper, we study the problem of finding a pair of shortest disjoint paths that can be represented by only two forwarding table entries per destination. Building on prior work on minimum length redundant trees, we show that the underlying mathematical problem is NP-complete and we present heuristic algorithms that improve the known complexity bounds from cubic to the order of a single shortest path search. Finally, by extensive simulations we find that it is possible to very closely attain the absolute optimal path length with our algorithms (the gap is just 1–5%), eventually opening the door for wide-scale multipath routing deployments

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work
    corecore