61 research outputs found

    Analyzing Attacks on Cooperative Adaptive Cruise Control (CACC)

    Full text link
    Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.Comment: 8 pages (author version), 5 Figures, Accepted at 2017 IEEE Vehicular Networking Conference (VNC

    Security of Vehicular Platooning

    Get PDF
    Platooning concept involves a group of vehicles acting as a single unit through coordination of movements. While Platooning as an evolving trend in mobility and transportation diminishes the individual and manual driving concerns, it creates new risks. New technologies and passenger’s safety and security further complicate matters and make platooning attractive target for the malicious minds. To improve the security of the vehicular platooning, threats and their potential impacts on vehicular platooning should be identified to protect the system against security risks. Furthermore, algorithms should be proposed to detect intrusions and mitigate the effects in case of attack. This dissertation introduces a new vulnerability in vehicular platooning from the control systems perspective and presents the detection and mitigation algorithms to protect vehicles and passengers in the event of the attack

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    Cooperative control of autonomous connected vehicles from a Networked Control perspective: Theory and experimental validation

    Get PDF
    Formation control of autonomous connected vehicles is one of the typical problems addressed in the general context of networked control systems. By leveraging this paradigm, a platoon composed by multiple connected and automated vehicles is represented as one-dimensional network of dynamical agents, in which each agent only uses its neighboring information to locally control its motion, while it aims to achieve certain global coordination with all other agents. Within this theoretical framework, control algorithms are traditionally designed based on an implicit assumption of unlimited bandwidth and perfect communication environments. However, in practice, wireless communication networks, enabling the cooperative driving applications, introduce unavoidable communication impairments such as transmission delay and packet losses that strongly affect the performances of cooperative driving. Moreover, in addition to this problem, wireless communication networks can suffer different security threats. The challenge in the control field is hence to design cooperative control algorithms that are robust to communication impairments and resilient to cyber attacks. The work aim is to tackle and solve these challenges by proposing different properly designed control strategies. They are validated both in analytical, numerical and experimental ways. Obtained results confirm the effectiveness of the strategies in coping with communication impairments and security vulnerabilities

    A Study of Potential Security and Safety Vulnerabilities in Cyber-Physical Systems

    Get PDF
    The work in this dissertation focuses on two examples of Cyber-Physical Systems (CPS), integrations of communication and monitoring capabilities to control a physical system, that operate in adversarial environments. That is to say, it is possible for individuals with malicious intent to gain access to various components of the CPS, disrupt normal operation, and induce harmful impacts. Such a deliberate action will be referred to as an attack. Therefore, some possible attacks against two CPSs will be studied in this dissertation and, when possible, solutions to handle such attacks will also be suggested. The first CPS of interest is vehicular platoons wherein it is possible for a number of partially-automated vehicles to drive autonomously towards a certain destination with as little human driver involvement as possible. Such technology will ultimately allow passengers to focus on other tasks, such as reading or watching a movie, rather than on driving. In this dissertation three possible attacks against such platoons are studied. The first is called ”the disbanding attack” wherein the attacker is capable of disrupting one platoon and also inducing collisions in another intact (non-attacked) platoon vehicles. To handle such an attack, two solutions are suggested: The first solution is formulated using Model Predictive Control (MPC) optimal technique, while the other uses a heuristic approach. The second attack is False-Data Injection (FDI) against the platooning vehicular sensors is analyzed using the reachability analysis. This analysis allows us to validate whether or not it is possible for FDI attacks to drive a platoon towards accidents. Finally, mitigation strategies are suggested to prevent an attacker-controlled vehicle, one which operates inside a platoon and drives unpredictably, from causing collisions. These strategies are based on sliding mode control technique and once engaged in the intact vehicles, collisions are reduced and eventual control of those vehicles will be switched from auto to human to further reduce the impacts of the attacker-controlled vehicle. The second CPS of interest in this dissertation is Heating, Ventilating, and Air Conditioning (HVAC) systems used in smart automated buildings to provide an acceptable indoor environment in terms of thermal comfort and air quality for the occupants For these systems, an MPC technique based controller is formulated in order to track a desired temperature in each zone of the building. Some previous studies indicate the possibility of an attacker to manipulate the measurements of temperature sensors, which are installed at different sections of the building, and thereby cause them to read below or above the real measured temperature. Given enough time, an attacker could monitor the system, understand how it works, and decide which sensor(s) to target. Eventually, the attacker may be able to deceive the controller, which uses the targeted sensor(s) readings and raises the temperature of one or multiple zones to undesirable levels, thereby causing discomfort for occupants in the building. In order to counter such attacks, Moving Target Defense (MTD) technique is utilized in order to constantly change the sensors sets used by the MPC controllers and, as a consequence, reduce the impacts of sensor attacks

    Safe and Secure Control of Connected and Automated Vehicles

    Get PDF
    Evolution of Connected and Automated Vehicles (CAV), as an important class of Cyber-Physical Systems (CPS), plays a crucial role in providing innovative services in transport and traffic management. Vehicle platoons, as a set of CAV, forming a string of connected vehicles, have offered significant enhancements in traffic management, energy consumption, and safety in intelligent transportation systems. However, due to the existence of the cyber layer in these systems, subtle security related issues have been underlined and need to be taken into account with sufficient attention. In fact, despite the benefits brought by the platoons, they potentially suffer from insecure networks which provide the connectivity among the vehicles participating in the platoon which makes these systems prone to be under the risk of cyber attacks. One (or more) external intelligent intruder(s) might attack one (or more) of the vehicles participating in a platoon. In this respect, the need for a safe and secure driving experience is highly sensible and crucial. Hence, we will concentrate on improving the safety and security of CAVs in different scenarios by taking advantage of security related approaches and CAV control systems. In this thesis, we are going to focus on two main levels of platoon control, namely I) High level secure platoon control, and II) Low level secure platoon control. In particular, in the high level part, we consider platoons with arbitrary inter-vehicular communication topoloy whereby the vehicles are able to exchange their driving data with each other through DSRC-based environment. The whole platoon is modeled using graph-theoretic notions by denoting the vehicles as the nodes and the inter-vehicular communication quality as the edge weights. We study the security of the vehicle platoon exposed to cyber attacks using a novel game-theoretic approach. The platoon topologies under investigation are directed (called predecessor following) or undirected (bidirectional) weighted graphs. The attacker-detector game is defined as follows. The attacker targets some vehicles in the platoon to attack and the detector deploys monitoring sensors on the vehicles. The attacker's objective is to be as stealthy to the sensors as possible while the detector tries to place the monitoring sensors to detect the attack impact as much as he can. The existence of equilibrium strategies for this game is investigated based on which the detector can choose specific vehicles to put his sensors on and increase the security level of the system. Moreover, we study the effect of adding (or removing) communication links between vehicles on the game value. We then address the same problem while investigating the optimal actuator placement strategy needed by the defender to mitigate the effects of the attack. In this respect, the energy needed by the attacker to steer the consensus follower-leader dynamics of the system towards his desired direction is used as the game payoff. Simulation and experimental results conducted on a vehicle platoon setup using Robotic Operating System (ROS) demonstrate the effectiveness of our analyses. In the low level platoon control, we exploit novel secure model predictive controller algorithms to provide suitable countermeasure against a prevalent data availability attack, namely Denial-of-Service (DoS) attack. A DoS intruder can endanger the security of platoon by jamming the communication network among the vehicles which is responsible to transmit inter-vehicular data throughout the platoon. In other words, he may cause a failure in the network by jamming it or injecting a huge amount of delay, which in essence makes the outdated transferred data useless. This can potentially result in huge performance degradation or even hazardous collisions. We propose novel secure distributed nonlinear model predictive control algorithms for both static and dynamic nonlinear heterogeneous platoons which are capable of handling DoS attack performed on a platoon equipped by different communication topologies and at the same time they guarantee the desired formation control performance. Notably, in the dynamic case, our proposed method is capable of providing safe and secure control of the platoon in which arbitrary vehicles might perform cut-in and/or cut-out maneuvers. Convergence time analysis of the system are also investigated. Simulation results on a sample heterogeneous attacked platoon exploiting two-predecessor follower communication environment demonstrates the fruitfulness of the method

    On Resilient Control for Secure Connected Vehicles: A Hybrid Systems Approach

    Get PDF
    According to the Internet of Things Forecast conducted by Ericsson, connected devices will be around 29 billion by 2022. This technological revolution enables the concept of Cyber-Physical Systems (CPSs) that will transform many applications, including power-grid, transportation, smart buildings, and manufacturing. Manufacturers and institutions are relying on technologies related to CPSs to improve the efficiency and performances of their products and services. However, the higher the number of connected devices, the higher the exposure to cybersecurity threats. In the case of CPSs, successful cyber-attacks can potentially hamper the economy and endanger human lives. Therefore, it is of paramount importance to develop and adopt resilient technologies that can complement the existing security tools to make CPSs more resilient to cyber-attacks. By exploiting the intrinsically present physical characteristics of CPSs, this dissertation employs dynamical and control systems theory to improve the CPS resiliency to cyber-attacks. In particular, we consider CPSs as Networked Control Systems (NCSs), which are control systems where plant and controller share sensing and actuating information through networks. This dissertation proposes novel design procedures that maximize the resiliency of NCSs to network imperfections (i.e., sampling, packet dropping, and network delays) and denial of service (DoS) attacks. We model CPSs from a general point of view to generate design procedures that have a vast spectrum of applicability while creating computationally affordable algorithms capable of real-time performances. Indeed, the findings of this research aspire to be easily applied to several CPSs applications, e.g., power grid, transportation systems, and remote surgery. However, this dissertation focuses on applying its theoretical outcomes to connected and automated vehicle (CAV) systems where vehicles are capable of sharing information via a wireless communication network. In the first part of the dissertation, we propose a set of LMI-based constructive Lyapunov-based tools for the analysis of the resiliency of NCSs, and we propose a design approach that maximizes the resiliency. In the second part of the thesis, we deal with the design of DOS-resilient control systems for connected vehicle applications. In particular, we focus on the Cooperative Adaptive Cruise Control (CACC), which is one of the most popular and promising applications involving CAVs

    On the Secure and Resilient Design of Connected Vehicles: Methods and Guidelines

    Get PDF
    Vehicles have come a long way from being purely mechanical systems to systems that consist of an internal network of more than 100 microcontrollers and systems that communicate with external entities, such as other vehicles, road infrastructure, the manufacturer’s cloud and external applications. This combination of resource constraints, safety-criticality, large attack surface and the fact that millions of people own and use them each day, makes securing vehicles particularly challenging as security practices and methods need to be tailored to meet these requirements.This thesis investigates how security demands should be structured to ease discussions and collaboration between the involved parties and how requirements engineering can be accelerated by introducing generic security requirements. Practitioners are also assisted in choosing appropriate techniques for securing vehicles by identifying and categorising security and resilience techniques suitable for automotive systems. Furthermore, three specific mechanisms for securing automotive systems and providing resilience are designed and evaluated. The first part focuses on cyber security requirements and the identification of suitable techniques based on three different approaches, namely (i) providing a mapping to security levels based on a review of existing security standards and recommendations; (ii) proposing a taxonomy for resilience techniques based on a literature review; and (iii) combining security and resilience techniques to protect automotive assets that have been subject to attacks. The second part presents the design and evaluation of three techniques. First, an extension for an existing freshness mechanism to protect the in-vehicle communication against replay attacks is presented and evaluated. Second, a trust model for Vehicle-to-Vehicle communication is developed with respect to cyber resilience to allow a vehicle to include trust in neighbouring vehicles in its decision-making processes. Third, a framework is presented that enables vehicle manufacturers to protect their fleet by detecting anomalies and security attacks using vehicle trust and the available data in the cloud

    Attacks on self-driving cars and their countermeasures : a survey

    Get PDF
    Intelligent Traffic Systems (ITS) are currently evolving in the form of a cooperative ITS or connected vehicles. Both forms use the data communications between Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I/I2V) and other on-road entities, and are accelerating the adoption of self-driving cars. The development of cyber-physical systems containing advanced sensors, sub-systems, and smart driving assistance applications over the past decade is equipping unmanned aerial and road vehicles with autonomous decision-making capabilities. The level of autonomy depends upon the make-up and degree of sensor sophistication and the vehicle's operational applications. As a result, self-driving cars are being compromised perceived as a serious threat. Therefore, analyzing the threats and attacks on self-driving cars and ITSs, and their corresponding countermeasures to reduce those threats and attacks are needed. For this reason, some survey papers compiling potential attacks on VANETs, ITSs and self-driving cars, and their detection mechanisms are available in the current literature. However, up to our knowledge, they have not covered the real attacks already happened in self-driving cars. To bridge this research gap, in this paper, we analyze the attacks that already targeted self-driving cars and extensively present potential cyber-Attacks and their impacts on those cars along with their vulnerabilities. For recently reported attacks, we describe the possible mitigation strategies taken by the manufacturers and governments. This survey includes recent works on how a self-driving car can ensure resilient operation even under ongoing cyber-Attack. We also provide further research directions to improve the security issues associated with self-driving cars. © 2013 IEEE
    • …
    corecore