3,642 research outputs found

    Consensus of Multi-Agent Networks in the Presence of Adversaries Using Only Local Information

    Full text link
    This paper addresses the problem of resilient consensus in the presence of misbehaving nodes. Although it is typical to assume knowledge of at least some nonlocal information when studying secure and fault-tolerant consensus algorithms, this assumption is not suitable for large-scale dynamic networks. To remedy this, we emphasize the use of local strategies to deal with resilience to security breaches. We study a consensus protocol that uses only local information and we consider worst-case security breaches, where the compromised nodes have full knowledge of the network and the intentions of the other nodes. We provide necessary and sufficient conditions for the normal nodes to reach consensus despite the influence of the malicious nodes under different threat assumptions. These conditions are stated in terms of a novel graph-theoretic property referred to as network robustness.Comment: This report contains the proofs of the results presented at HiCoNS 201

    Finite-Time Resilient Formation Control with Bounded Inputs

    Full text link
    In this paper we consider the problem of a multi-agent system achieving a formation in the presence of misbehaving or adversarial agents. We introduce a novel continuous time resilient controller to guarantee that normally behaving agents can converge to a formation with respect to a set of leaders. The controller employs a norm-based filtering mechanism, and unlike most prior algorithms, also incorporates input bounds. In addition, the controller is shown to guarantee convergence in finite time. A sufficient condition for the controller to guarantee convergence is shown to be a graph theoretical structure which we denote as Resilient Directed Acyclic Graph (RDAG). Further, we employ our filtering mechanism on a discrete time system which is shown to have exponential convergence. Our results are demonstrated through simulations

    How Physicality Enables Trust: A New Era of Trust-Centered Cyberphysical Systems

    Full text link
    Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world
    • …
    corecore