1,212 research outputs found

    Reliability, Resiliency, Robustness, and Vulnerability Criteria for Water Resource Systems

    Get PDF
    Three criteria for evaluating the possible performance of water resource systems are discussed. These measures describe how likely a system is to fail (reliability), how quickly it recovers from failure (resiliency), and how severe the consequences of failure may be (vulnerability). These criteria can be used to assist in the evaluation and selection of alternative design and operating policies for a wide variety of water resource projects. The performance of a water supply reservoir with a variety of operating policies illustrates their use. When water resource investments are made there is little assurance that the predicted performance will coincide with the actual performance. Robustness is proposed as a measure of the likelihood that the actual cost of a proposed project will not exceed some fraction of the minimum possible cost of a system designed for the actual conditions that occur in the future. The robustness criterion is illustrated by its application to the planning of water supply systems in southwestern Sweden

    A Framework for Web Object Self-Preservation

    Get PDF
    We propose and develop a framework based on emergent behavior principles for the long-term preservation of digital data using the web infrastructure. We present the development of the framework called unsupervised small-world (USW) which is at the nexus of emergent behavior, graph theory, and digital preservation. The USW algorithm creates graph based structures on the Web used for preservation of web objects (WOs). Emergent behavior activities, based on Craig Reynolds’ “boids” concept, are used to preserve WOs without the need for a central archiving authority. Graph theory is extended by developing an algorithm that incrementally creates small-world graphs. Graph theory provides a foundation to discuss the vulnerability of graphs to different types of failures and attack profiles. Investigation into the robustness and resilience of USW graphs lead to the development of a metric to quantify the effect of damage inflicted on a graph. The metric remains valid whether the graph is connected or not. Different USW preservation policies are explored within a simulation environment where preservation copies have to be spread across hosts. Spreading the copies across hosts helps to ensure that copies will remain available even when there is a concerted effort to remove all copies of a USW component. A moderately aggressive preservation policy is the most effective at making the best use of host and network resources. Our efforts are directed at answering the following research questions: 1. Can web objects (WOs) be constructed to outlive the people and institutions that created them? We have developed, analyzed, tested through simulations, and developed a reference implementation of the unsupervised small-world (USW) algorithm that we believe will create a connected network of WOs based on the web infrastructure (WI) that will outlive the people and institutions that created the WOs. The USW graph will outlive its creators by being robust and continuing to operate when some of its WOs are lost, and it is resilient and will recover when some of its WOs are lost. 2. Can we leverage aspects of naturally occurring networks and group behavior for preservation? We used Reynolds’ tenets for “boids” to guide our analysis and development of the USW algorithm. The USW algorithm allows a WO to “explore” a portion of the USW graph before making connections to members of the graph and before making preservation copies across the “discovered” graph. Analysis and simulation show that the USW graph has an average path length (L(G)) and clustering coefficient (C(G)) values comparable to small-world graphs. A high C(G) is important because it reflects how likely it is that a WO will be able spread copies to other domains, thereby increasing its likelihood of long term survival. A short L(G) is important because it means that a WO will not have to look too far to identify new candidate preservation domains, if needed. Small-world graphs occur in nature and are thus believed to be robust and resilient. The USW algorithms use these small-world graph characteristics to spread preservation copies across as many hosts as needed and possible. USW graph creation, damage, repair and preservation has been developed and tested in a simulation and reference implementation

    Is Geometry Enough for Matching in Visual Localization?

    Full text link
    In this paper, we propose to go beyond the well-established approach to vision-based localization that relies on visual descriptor matching between a query image and a 3D point cloud. While matching keypoints via visual descriptors makes localization highly accurate, it has significant storage demands, raises privacy concerns and requires update to the descriptors in the long-term. To elegantly address those practical challenges for large-scale localization, we present GoMatch, an alternative to visual-based matching that solely relies on geometric information for matching image keypoints to maps, represented as sets of bearing vectors. Our novel bearing vectors representation of 3D points, significantly relieves the cross-modal challenge in geometric-based matching that prevented prior work to tackle localization in a realistic environment. With additional careful architecture design, GoMatch improves over prior geometric-based matching work with a reduction of (10.67m,95.7deg) and (1.43m, 34.7deg) in average median pose errors on Cambridge Landmarks and 7-Scenes, while requiring as little as 1.5/1.7% of storage capacity in comparison to the best visual-based matching methods. This confirms its potential and feasibility for real-world localization and opens the door to future efforts in advancing city-scale visual localization methods that do not require storing visual descriptors.Comment: ECCV2022 Camera Read

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Flexible Macroblock Ordering for Context-Aware Ultrasound Video Transmission over Mobile WiMAX

    Get PDF
    The most recent network technologies are enabling a variety of new applications, thanks to the provision of increased bandwidth and better management of Quality of Service. Nevertheless, telemedical services involving multimedia data are still lagging behind, due to the concern of the end users, that is, clinicians and also patients, about the low quality provided. Indeed, emerging network technologies should be appropriately exploited by designing the transmission strategy focusing on quality provision for end users. Stemming from this principle, we propose here a context-aware transmission strategy for medical video transmission over WiMAX systems. Context, in terms of regions of interest (ROI) in a specific session, is taken into account for the identification of multiple regions of interest, and compression/transmission strategies are tailored to such context information. We present a methodology based on H.264 medical video compression and Flexible Macroblock Ordering (FMO) for ROI identification. Two different unequal error protection methodologies, providing higher protection to the most diagnostically relevant data, are presented
    corecore