165 research outputs found

    Multi-Frame Quality Enhancement for Compressed Video

    Full text link
    The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, ignoring the similarity between consecutive frames. In this paper, we investigate that heavy quality fluctuation exists across compressed video frames, and thus low quality frames can be enhanced using the neighboring high quality frames, seen as Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as a first attempt in this direction. In our approach, we firstly develop a Support Vector Machine (SVM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are as the input. The MF-CNN compensates motion between the non-PQF and PQFs through the Motion Compensation subnet (MC-subnet). Subsequently, the Quality Enhancement subnet (QE-subnet) reduces compression artifacts of the non-PQF with the help of its nearest PQFs. Finally, the experiments validate the effectiveness and generality of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code of our MFQE approach is available at https://github.com/ryangBUAA/MFQE.gitComment: to appear in CVPR 201

    Learned Quality Enhancement via Multi-Frame Priors for HEVC Compliant Low-Delay Applications

    Full text link
    Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video compression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually

    Quality-Gated Convolutional LSTM for Enhancing Compressed Video

    Full text link
    The past decade has witnessed great success in applying deep learning to enhance the quality of compressed video. However, the existing approaches aim at quality enhancement on a single frame, or only using fixed neighboring frames. Thus they fail to take full advantage of the inter-frame correlation in the video. This paper proposes the Quality-Gated Convolutional Long Short-Term Memory (QG-ConvLSTM) network with bi-directional recurrent structure to fully exploit the advantageous information in a large range of frames. More importantly, due to the obvious quality fluctuation among compressed frames, higher quality frames can provide more useful information for other frames to enhance quality. Therefore, we propose learning the "forget" and "input" gates in the ConvLSTM cell from quality-related features. As such, the frames with various quality contribute to the memory in ConvLSTM with different importance, making the information of each frame reasonably and adequately used. Finally, the experiments validate the effectiveness of our QG-ConvLSTM approach in advancing the state-of-the-art quality enhancement of compressed video, and the ablation study shows that our QG-ConvLSTM approach is learnt to make a trade-off between quality and correlation when leveraging multi-frame information. The project page: https://github.com/ryangchn/QG-ConvLSTM.git.Comment: Accepted to IEEE International Conference on Multimedia and Expo (ICME) 201
    • …
    corecore